Home
Class 12
MATHS
If f(x) = x^(1//x) , " then: f''(e) is...

If ` f(x) = x^(1//x) , " then: f''(e)` is

A

1

B

e

C

`-e^(1//3)`

D

`- e^((1)/(e) - 3) `

Text Solution

Verified by Experts

The correct Answer is:
D

Given , ` f(x) = x^((1)/(x))`
` log f(x) = (1)/(x) log x `
` therefore (1)/(f(x)) xx f'(x) = (1)/(x) xx(1)/(x)+ log x (-(1)/(x^(2)))`
`rArr f'(x) = f(x) [(1 - log x)/(x^(2))]`
` rArr f''(x) = f(x) [ (x^(2) (-(1)/(x))- (1 - log x) 2x)/(x^(4))] + ((1 - log x)/(x^(2))) f'(x)`
Now , ` f(e) = e^(1//e)`
and ` f'(e) = 0 `
`therefore f''(e) = e^(1//e) [(-e -0)/(e^(4))] = - e^(1//e) . e^(-3)`
` =e-^(1//e-3)` .
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|80 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORER|35 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (DERIVATIVE OF IMPLICIT FUNCTION)|21 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x.e^(x(1-x), then f(x) is

Let f:Rto R be a functino defined by f (x) = e ^(x) -e ^(-x), then f'(1)=

Knowledge Check

  • If f(x)=x e^(x(1-x)) , then f(x) is

    A
    decreasing on `((-1)/(2),1)`
    B
    increasing on `((-1)/(2),1)`
    C
    decreasing on R
    D
    increasing on R
  • If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x) , then f(x) is, (given f(0) = 0)

    A
    an even function
    B
    an odd function
    C
    neither even nor odd function
    D
    can't say
  • If : f(x)=e^(x^2)," then: "f'(x)-2x*f(x)+(1)/(3)*f(0)-f'(0)=

    A
    0
    B
    1
    C
    `(7)/(3)*e^(x^2)`
    D
    none of theses
  • Similar Questions

    Explore conceptually related problems

    If f(x)=e^(x)(x^(2)+1) then find f'(x)

    Suppose for a differentiable function f,f(0)=0,f(1)=1 and f(0)=4=f'(1) If g(x)=f(e^(x))*e^(f(x)) then g'(0) is

    If 3 f(x) - f((1)/(x) ) = log x^(4) , then f(e^(-x)) is

    Suppose for a differentiable function f, f(0)=0,f(1)=1 and f'(0)=4=f'(1) . If g(x)=f(e^(x))e^(f(x)) then g'(0) is equal to

    If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :