Home
Class 12
MATHS
What is the value of b such that the sca...

What is the value of b such that the scalar product of the vector `hat(i)+hat(j)+hat(k)` with the unit vector parallel to the sum of the vectors `2hat(i)+4hat(j)-5 hat(k) and b hat(i)+2hat(j)+3hat(k) ` is unity ?

A

-2

B

-1

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( b \) such that the scalar product of the vector \( \hat{i} + \hat{j} + \hat{k} \) with the unit vector parallel to the sum of the vectors \( 2\hat{i} + 4\hat{j} - 5\hat{k} \) and \( b\hat{i} + 2\hat{j} + 3\hat{k} \) is equal to 1. ### Step-by-step Solution: 1. **Define the vectors:** Let: \[ \mathbf{A} = \hat{i} + \hat{j} + \hat{k} \] \[ \mathbf{B} = 2\hat{i} + 4\hat{j} - 5\hat{k} \] \[ \mathbf{C} = b\hat{i} + 2\hat{j} + 3\hat{k} \] 2. **Find the sum of vectors \( \mathbf{B} \) and \( \mathbf{C} \):** \[ \mathbf{B} + \mathbf{C} = (2 + b)\hat{i} + (4 + 2)\hat{j} + (-5 + 3)\hat{k} \] Simplifying this gives: \[ \mathbf{B} + \mathbf{C} = (2 + b)\hat{i} + 6\hat{j} - 2\hat{k} \] 3. **Find the magnitude of the resultant vector:** The magnitude of \( \mathbf{B} + \mathbf{C} \) is: \[ \|\mathbf{B} + \mathbf{C}\| = \sqrt{(2 + b)^2 + 6^2 + (-2)^2} \] Calculating this gives: \[ \|\mathbf{B} + \mathbf{C}\| = \sqrt{(2 + b)^2 + 36 + 4} = \sqrt{(2 + b)^2 + 40} \] 4. **Find the unit vector in the direction of \( \mathbf{B} + \mathbf{C} \):** The unit vector \( \mathbf{N} \) parallel to \( \mathbf{B} + \mathbf{C} \) is given by: \[ \mathbf{N} = \frac{\mathbf{B} + \mathbf{C}}{\|\mathbf{B} + \mathbf{C}\|} = \frac{(2 + b)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{(2 + b)^2 + 40}} \] 5. **Set up the scalar product equation:** We need the scalar product \( \mathbf{A} \cdot \mathbf{N} = 1 \): \[ (\hat{i} + \hat{j} + \hat{k}) \cdot \left( \frac{(2 + b)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{(2 + b)^2 + 40}} \right) = 1 \] This simplifies to: \[ \frac{(2 + b) + 6 - 2}{\sqrt{(2 + b)^2 + 40}} = 1 \] Which can be rewritten as: \[ \frac{(b + 6)}{\sqrt{(2 + b)^2 + 40}} = 1 \] 6. **Cross-multiply to eliminate the fraction:** \[ b + 6 = \sqrt{(2 + b)^2 + 40} \] 7. **Square both sides:** \[ (b + 6)^2 = (2 + b)^2 + 40 \] Expanding both sides gives: \[ b^2 + 12b + 36 = b^2 + 4b + 4 + 40 \] Simplifying this results in: \[ b^2 + 12b + 36 = b^2 + 4b + 44 \] 8. **Rearranging the equation:** \[ 12b - 4b + 36 - 44 = 0 \] This simplifies to: \[ 8b - 8 = 0 \] Thus: \[ 8b = 8 \implies b = 1 \] ### Final Answer: The value of \( b \) is \( 1 \).

To solve the problem, we need to find the value of \( b \) such that the scalar product of the vector \( \hat{i} + \hat{j} + \hat{k} \) with the unit vector parallel to the sum of the vectors \( 2\hat{i} + 4\hat{j} - 5\hat{k} \) and \( b\hat{i} + 2\hat{j} + 3\hat{k} \) is equal to 1. ### Step-by-step Solution: 1. **Define the vectors:** Let: \[ \mathbf{A} = \hat{i} + \hat{j} + \hat{k} ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

The scalar product of the vector hat i+hat j+hat k with the unit vector along the sum of vectors 2hat i+4hat j-5hat k. and lambdahat i+2hat j+3hat k is equal to one.Find the value of lambda .

Find a unit vector perpendicular to the plane of two vectors a=hat(i)-hat(j)+2hat(k) and b=2hat(i)+3hat(j)-hat(k) .

Knowledge Check

  • What is the value of b such that the scalar product of the vector hat(i) + hat(j) + hat(k) with the unit vector parallel to the sum of the vectors 2hat(i) + 4hat(j)-5hat(k) and b hat(i) + 2hat(j) + 3hat(k) is unity ?

    A
    `-2`
    B
    `-1`
    C
    0
    D
    1
  • The unit vectors parallel to the resultant vectors of 2hat(i)+4hat(j)-5hat(k) and hat(i)+2hat(j)+3hat(k) is

    A
    `(3hat(i)+6hat(j)-2hat(k))/(7)`
    B
    `(hat(i)+hat(j)+hat(k))/(sqrt(3))`
    C
    `(hat(i)+hat(j)+2hat(k))/(sqrt(6))`
    D
    `(-hat(i)-hat(j)+8hat(k))/(sqrt(69))`
  • A unit vector perpendicular to each of the vectors 2hat(i) - hat(j) + hat(k ) and 3hat(i) - 4hat(i) - hat(k) is

    A
    `(1)/(sqrt3) hat(i) + (1)/(sqrt3) hat(j) - (1)/(sqrt3) hat(k)`
    B
    `(1)/(sqrt2) hat(i) + (1)/(2) hat(j) + (1)/(2) hat(k)`
    C
    `(1)/(sqrt3) hat(i) - (1)/(sqrt3) hat(j) -(1)/(sqrt3) hat(k)`
    D
    `(1)/(sqrt3) hat(i) + (1)/(3) hat(j) + (1)/(sqrt3) hat(k)`
  • Similar Questions

    Explore conceptually related problems

    The scalar product of the vector hat i+ hat j+ hat k with a unit vector along the sum of vector 2 hat i+4 hat j-5 hat k and lambda hat i+2 hat j+3 hat k is equal to one. Find the value of lambda .

    The unit vector parallel to the resultant of the vectors vec(A)= 4hat(i)+3hat(j)+6hat(k) and vec(B)= -hat(i)+3hat(j)-8hat(k) is

    The two vectors A=2hat(i)+hat(j)+3hat(k) and B=7hat(i)-5hat(j)-3hat(k) are :-

    The unit vector parallel to the resultant of the vectors vec(A) = hat(i) + 2 hat(j) - hat(k) and vec(B) = 2 hat(i) + 4 hat(j) - hat(k) is

    Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat(i) - 2hat(j) + 3hat(k) is :