Home
Class 12
MATHS
If 1,alpha(1),alpha(2),………..,alpha(n-1) ...

If `1,alpha_(1),alpha_(2),………..,alpha_(n-1)` are `nk^(th)` roots of unity, then the value of
`(1-alpha_(1))(1-alpha_(2))(1-alpha_(3))……(1-alpha_(n-1))` is equal to

A

`sqrt(3)`

B

`1//2`

C

n

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \((1 - \alpha_1)(1 - \alpha_2)(1 - \alpha_3) \cdots (1 - \alpha_{n-1})\), where \(1, \alpha_1, \alpha_2, \ldots, \alpha_{n-1}\) are the \(nk^{th}\) roots of unity. ### Step-by-Step Solution: 1. **Understanding Roots of Unity**: The \(nk^{th}\) roots of unity are given by the formula: \[ \alpha_j = e^{\frac{2\pi i j}{nk}} \quad \text{for } j = 0, 1, 2, \ldots, nk-1 \] Here, \(1\) corresponds to \(j=0\) and \(\alpha_1, \alpha_2, \ldots, \alpha_{n-1}\) correspond to \(j=1, 2, \ldots, n-1\). 2. **Polynomial Representation**: The \(nk^{th}\) roots of unity can be expressed as the roots of the polynomial: \[ x^{nk} - 1 = 0 \] This can be factored as: \[ x^{nk} - 1 = (x - 1)(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_{nk-1}) \] 3. **Using the Polynomial**: We can express the polynomial as: \[ x^{nk} - 1 = (x - 1)Q(x) \] where \(Q(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_{nk-1})\). 4. **Finding the Value at \(x = 1\)**: We need to evaluate: \[ (1 - \alpha_1)(1 - \alpha_2)(1 - \alpha_3) \cdots (1 - \alpha_{n-1}) = Q(1) \] Substitute \(x = 1\) into \(Q(x)\): \[ Q(1) = (1 - \alpha_1)(1 - \alpha_2) \cdots (1 - \alpha_{n-1}) \] 5. **Calculating \(Q(1)\)**: Since \(Q(x)\) is a polynomial of degree \(nk - 1\) and has roots at \(\alpha_1, \alpha_2, \ldots, \alpha_{n-1}\): \[ Q(1) = \frac{1^{nk} - 1}{1 - 1} = 0 \quad \text{(indeterminate form)} \] We can apply L'Hôpital's Rule or consider the limit as \(x\) approaches \(1\). 6. **Using the Sum of Roots**: The sum of the \(nk^{th}\) roots of unity is zero: \[ 1 + \alpha_1 + \alpha_2 + \cdots + \alpha_{nk-1} = 0 \] Therefore, the product of the terms \((1 - \alpha_j)\) can be computed as: \[ (1 - \alpha_1)(1 - \alpha_2) \cdots (1 - \alpha_{n-1}) = n \] 7. **Final Result**: Thus, the value of \((1 - \alpha_1)(1 - \alpha_2)(1 - \alpha_3) \cdots (1 - \alpha_{n-1})\) is: \[ n^k \] ### Conclusion: The value of \((1 - \alpha_1)(1 - \alpha_2)(1 - \alpha_3) \cdots (1 - \alpha_{n-1})\) is \(n^k\). ---

To solve the problem, we need to find the value of the expression \((1 - \alpha_1)(1 - \alpha_2)(1 - \alpha_3) \cdots (1 - \alpha_{n-1})\), where \(1, \alpha_1, \alpha_2, \ldots, \alpha_{n-1}\) are the \(nk^{th}\) roots of unity. ### Step-by-Step Solution: 1. **Understanding Roots of Unity**: The \(nk^{th}\) roots of unity are given by the formula: \[ \alpha_j = e^{\frac{2\pi i j}{nk}} \quad \text{for } j = 0, 1, 2, \ldots, nk-1 ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

If 1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are n, nth roots of unity, then (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))...(1-alpha_(n-1)) equals to

If 1,alpha_(1),alpha_(2),...,alpha_(n-1) are n^( th) roots of unity then (1)/(1-alpha_(1))+(1)/(1-alpha_(2))+....+(1)/(1-alpha_(n-1))=

If 1,alpha,alpha^(2),……….,alpha^(n-1) are n^(th) root of unity, the value of (3-alpha)(3-alpha^(2))(3-alpha^(3))……(3-alpha^(n-1)) , is

If 1,alpha_(1),alpha_(2)......alpha_(n-1) are n^(th) roots of unity then (1)/(1-alpha_(1))+(1)/(1-alpha_(2))+......+(1)/(1-alpha_(n-1))=

If 1,alpha_(1),alpha_(2),…………….,alpha_(n-1) are n^(th) roots of unity and n is an even natural number, then (1+alpha_(1))(1+alpha_(2))(1+alpha_(3))……(1+alpha_(n-1)) equals

if alpha_(1),alpha_(2),.... alpha_(8) are the 8 th roots of unity then:

If 1,alpha,alpha^(2),alpha^(3),......,alpha^(n-1) are nn^(th) roots of unity,then find the value of (2011-alpha)(2011-alpha^(2))....(2011-alpha^(n-1))

If nge3and1,alpha_(1),alpha_(2),.......,alpha_(n-1) are nth roots of unity then the sum sum_(1leiltjlen-1)alpha_(i)alpha(j)=

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Chapter Test
  1. If 1,alpha(1),alpha(2),………..,alpha(n-1) are nk^(th) roots of unity, th...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. If n1, n2 are positive integers, then (1 + i)^(n1) + ( 1 + i^3)^(n1) +...

    Text Solution

    |

  4. The modulus of sqrt(2i)-sqrt(-2i) is

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA + sinB + sinC=0and A+B+C=180^0, then the valu...

    Text Solution

    |

  9. The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omeg...

    Text Solution

    |

  10. The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n(2)) is real iff

    Text Solution

    |

  13. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  14. The centre of a square ABCD is at z0dot If A is z1 , then the centroid...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  16. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  17. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  18. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  19. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  20. Re((z+4)/(2z-1)) = 1/2, then z is represented by a point lying on

    Text Solution

    |

  21. The vertices of a square are z1,z2,z3 and z4 taken in the anticlockwis...

    Text Solution

    |