Home
Class 12
PHYSICS
If y=log (e) x+sin x+e^(x) then (dy)/(dx...

If `y=log _(e) x+sin x+e^(x) `then `(dy)/(dx)` is:

A

`1/x +sin x+ e^(x)`

B

`-(1)/(x^(2))-cos x +e^(x)`

C

`1/x+ cos x+e^(x)`

D

`-(1)/(x^(2))-sin +e^(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = \log_e x + \sin x + e^x \), we will differentiate each term separately. ### Step-by-step Solution: 1. **Identify the function**: \[ y = \log_e x + \sin x + e^x \] 2. **Differentiate each term**: - The derivative of \( \log_e x \) (which is the natural logarithm) is: \[ \frac{d}{dx}(\log_e x) = \frac{1}{x} \] - The derivative of \( \sin x \) is: \[ \frac{d}{dx}(\sin x) = \cos x \] - The derivative of \( e^x \) is: \[ \frac{d}{dx}(e^x) = e^x \] 3. **Combine the derivatives**: Now, we can combine the derivatives of all three terms: \[ \frac{dy}{dx} = \frac{1}{x} + \cos x + e^x \] 4. **Final result**: Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{1}{x} + \cos x + e^x \]

To find the derivative \( \frac{dy}{dx} \) for the function \( y = \log_e x + \sin x + e^x \), we will differentiate each term separately. ### Step-by-step Solution: 1. **Identify the function**: \[ y = \log_e x + \sin x + e^x \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If y=e^(sin^(2)x) then (dy)/(dx)=

If y = (sin x)^(log x) " then " (dy)/(dx) = ?

Knowledge Check

  • If y=log_(e)x+sinx+e^(x)" then "(dy)/(dx) is

    A
    `(1)/(x)+sinx+e^(x)`
    B
    `(1)/(x)-cosx+e^(x)`
    C
    `(1)/(x)+cosx+e^(x)`
    D
    `(1)/(x)-sinx`
  • If y = log ( cos e ^(x)), then (dy)/(dx)=

    A
    `e ^(x) cot e ^(x)`
    B
    `-e ^(x) sin e ^(x) log (cos e ^(x))`
    C
    `-e ^(x) tan e ^(x)`
    D
    `(1)/(cos e ^(x))`
  • If y=log _(e^(x) ) (log x ),then (dy)/(dx)

    A
    ` (2)/(xlogx ) `
    B
    ` (-2)/(xlogx ) `
    C
    ` (1)/(2xlogx ) `
    D
    ` (-1)/(2xlogx ) `
  • Similar Questions

    Explore conceptually related problems

    if sin y+e^(x cos y)=e then (dy)/(dx)

    If y=e^(tan x(ln sin x)) then (dy)/(dx) is equal to

    y =[ log_(x) (log _(e) x ) ](log _(e) x ) then (dy)/(dx) equals

    If y=e^(log_(e)(1+e^(log_(e)x))) then (dy)/(dx)=

    If y = log (cos e^(x)), then (dy)/(dx) is: