Home
Class 12
PHYSICS
If complex number z(zne2) satisfies the ...

If complex number `z(zne2)` satisfies the equation `z^(2)=4z+|z|^(2)+(16)/(|z|^(3))`, then what is the value of `|z|^(4)` ?

A

1

B

2

C

4

D

16

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TEST PAPERS

    ALLEN|Exercise PHYSICS|18 Videos
  • TEST PAPER 4

    ALLEN|Exercise PHYSICS|45 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (J-A)|7 Videos

Similar Questions

Explore conceptually related problems

If complex number z(z!=2) satisfies the equation z^(2)=4z+|z|^(2)+(16)/(|z|^(3)) ,then the value of |z|^(4) is

Non-real complex number z satisfying the equation z^(3)+2z^(2)+3z+2=0 are

Knowledge Check

  • If a complex number z satisfies |z|^(2)+(4)/(|z|)^(2)-2((z)/(barz)+(barz)/(z))-16=0 , then the maximum value of |z| is

    A
    `sqrt(6)+1`
    B
    `4`
    C
    `2+sqrt(6)`
    D
    `6`
  • If z_(1) ,z_(2) be two complex numbers satisfying the equation |(z_(1)+z_(2))/(z_(1)-z_(2))|=1 , then

    A
    `z_(1)barz_()+z_(2)barz_(1)=1`
    B
    ` (barz_(1)/( barz_(2))) = - z_(1)/z_(2)`
    C
    `z_(1)barz_(2) +z_(2)barz_(1)=0`
    D
    `Re(z_(1)barz_(2))=0`
  • Similar Questions

    Explore conceptually related problems

    Let z be a complex number satisfying the equation (z^(3)+3)^(2)=-16, then find the value of |z|

    If complex number z=x +iy satisfies the equation Re (z+1) = |z-1| , then prove that z lies on y^(2) = 4x .

    The number of complex number z satisfying the equations |z|-4=|z-i|-|z+5i|=0 is

    If z is a complex number satisfying the equation |z+i|+|z-i|=8, on the complex plane thenmaximum value of |z| is

    The complex number z satisfying z+|z|=1+zi then the value of |z|^(2) is

    Find the complex number z satisfying the equations |(z-12)/(z-8i)|=(5)/(3),|(z-4)/(z-8)|=1