Home
Class 12
CHEMISTRY
If a solid A^(o+)B^(ɵ) having ZnS Struct...

If a solid `A^(o+)B^(ɵ)` having `ZnS` Structure is heated so that the ions along two of the axis passing throgh the face centre particles are lost and bivalent ion `(Z)` enters herre to maintain the electrical neutrality, so that the new formula unit becomes `A_(x)B_(y)C_(c)`, report the value of `x + y + c`.

Doubtnut Promotions Banner Mobile Dark

Text Solution

Verified by Experts

The correct Answer is:
7

For `ZnS` structure, (`Z_(eff)` of `ZnS = 4`)
Number of `B^(ɵ) = 4//"unit cell" ("corner" + "face centre")`
Number of `A^(o+) = 4//"unit cell"` (in alternate TVs)
Number of `B^(o-)` ion removed
`= 4` (Two from each face centre)
`xx 1/2` (per face centre share) `= 2`
Number of `Br^(ɵ)`ions left `= 4 - 2 = 2//"unit cell"`
Number of `Z^(2-)` ions entering in place of `B^(ɵ) = 1`.
[To maintain electrical neutrality, `2 B^(ɵ) = 1 Z^(2)`]
Formula `= A_(4)B_(2)Z_(`1)`
`:. x + y + c = 4 + 2 + 1 = 7`
|

Topper's Solved these Questions

  • SOLID STATE

    CENGAGE CHEMISTRY|Exercise Exercises (Fill In The Blanks)|15 Videos
  • SOLID STATE

    CENGAGE CHEMISTRY|Exercise Exercises (True/False)|19 Videos
  • SOLID STATE

    CENGAGE CHEMISTRY|Exercise Exercises (Assertion-Reasoning)|19 Videos
  • REDUCTION AND OXIDATION REACTION OF ORGANIC COMPOUNDS

    CENGAGE CHEMISTRY|Exercise SUBJECTIVE TYPE|3 Videos
  • SOLUTIONS

    CENGAGE CHEMISTRY|Exercise Ex 2.3 (Objective)|9 Videos

Similar Questions

Explore conceptually related problems

यदि `x=a(b-c),y=b(c-a),z=c(a-b)` है तो `(x/a)^(3)+(y/b)^(3)+(z/c)^(3)` का मान है :

`B_(10)C_(2)H_(12)` is isostructural & isoelectronic with borate ion of formula `B_(x)H_(y)^(2-)` give `x+y+z`.

यदि वेक्टर `vec(A)=A_(x)hat(i)+A_(y)hat(j)+A_(z)hat(k)` तथा वेक्टर `vec(B)=B_(x)hat(i)+B_(y)hat(j)+B_(z)hat(k)` के बीच कोण `theta` हो तो सिद्ध कीजिये
(i) `vec(A)*vec(B)=A_(x)B_(x)+A_(y)B_(y)+A_(z)B_(z)`
(ii) `costheta=(A_(x)B_(x)+A_(y)B_(y)+A_(z)B_(z))/(sqrt(A_(x)^(2)+A_(y)^(2)+A_(z)^(2))*sqrt(B_(x)^(2)+B_(y)^(2)+B_(z)^(2)))`
(iii) `vec(A)xxvec(B)=|{:(hat(i),hat(j),hat(k)),(A_(x),A_(y),A_(z)),(B_(x),B_(y),B_(z)):}|`

An ionic compound `A_(x)B_(y)` occurs in fcc type crystal structure with B ion at the centre face and A ion occupying corners of the cube. Give the formula `A_(x)B_(y)`.

An ionic solid M_(x)A_(y) has a cubic unit cell with M^(y+) ions at its corners and A^(x-) ions at its centres. Determine the values of x and y.

An ionic compound A_(x) B_(y) crysllizes in fcc type crystal structure with B ions at the centre of each face and A ion occupying centre of the cube. The correct formula of A_(x) B_(y) is

An ionic compound A_(x)B_(y) crystallizes in fcc type crystal structure with B ions at the centre of each face and A ion occupying centre of the cubic, the correct formula A_(x)B_(y) is …………..

समीकरणों `a_(1)x + b_(1)y+c_(1) = 0 " और " a_(2)c + b_(2)y + c_(2) = 0 ,`में यदि `a_(1)/a_(2) = b_(1)/b_(2) = c_(1)/c_(2)`,तो निम्नलिखित में से कौन - सा सत्य है ?

समीकरणों `a_(1)x + b_(1) y + c_(1) = 0 " और " a_(z)x + b_(2)y + c_(2) = 0 " में " a_(1)/a_(2) = b_(1)/b_(2) ne c_(1)/c_(2)`, तो निम्नलिखित में से कौन - सा सत्य है ?

Consider the system of linear equations
`a_(1)x+b_(1)y+ c_(1)z+d_(1)=0`,
` a_(2)x+b_(2)y+ c_(2)z+d_(2)= 0`,
`a_(3)x+b_(3)y +c_(3)z+d_(3)=0`, Let us denote by `Delta` (a,b,c) the determinant `|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|` , if `Delta (a,b,c) `# 0, then the value of x in the unique solution of the above equations is

If solid A^(+)B^(-) having ZnS Structure is heated so that the ions along two of the axis passing through the face center particles are lost and bivalent ion (Z) enters here to maintain the electrical neutrality,so that new formula unit becomes A_(x)B_(y)Z_(c) Report the value of x+y+c

यदि `a_(1)x+b_(1)y+c_(1)z=0,a_(2)x+b_(2)y+c_(2)z=0,a_(3)x+b_(3)y+c_(3)z=0` व `[(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))]=0` तो दिये गये निकाय का है

रैखिक समीकरणों का निकाय `a_(1)x+b_(1)y+c_(1)z+d_(1)=0,a_(2)x+b_(2)y+c_(2)z+d_(2)=0` तथा `a_(3)x+b_(3)y+c_(3)z+d_(3)=0` पर विचार करते है। माना सारणिक `|(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))|,Delta(a,b,c)` द्वारा प्रदर्शित करते है यदि `Delta(a,b,c)ne0`, तब समीकरणों के अद्वितीय हल के लिये x का मान है

Body of linear equations a_(1)x+b_(1)y+c_(1)z+d_(1)=0,a_(2)x+b_(2)y+c_(2)z+d_(2)=0 And a_(3)x+b_(3)y+c_(3)z+d_(3)=0 Let's consider Considered deterministic |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))|,Delta(a,b,c) If displayed by Delta(a,b,c)ne0 , Then the value of x is for the unique solution of the equations.

यदि `x=(a-b)/(a+b), y=(b-c)/(b+c), z=(c-a)/(c+a)` है, तो `(x+1)/(x-1) xx (y+1)/(y-1) xx (z+1)/(z-1)` का मान ज्ञात करें।