Home
Class 11
PHYSICS
Given: vec(A)=Acos theta hat(i)+Asin the...

Given: `vec(A)=Acos theta hat(i)+Asin theta hat(j)`. A vector `vec(B)`, which is perpendicular to `vec(A)`,is given by

A

`B cos thetahat(i)-Bsin theta hat(j)`

B

`B sin theta hat(i)-B cos theta hat(j)`

C

`B cos theta hat(i)+Bsin theta hat(j)`

D

`B sin theta hat(i)+Bcos theta hat(j)`

Text Solution

Verified by Experts

The correct Answer is:
B

Clearly, `vec(B)` should be either in the second quadrant or the fourth quadrant. In none of the given options, we have `-hat(i)` term. So the second quadrant is ruled out. Also `vec(B)` should make an angle of `90^(@)- theta` with the x-axis (figure). So , B should be `vec(B) cos (90^(@)-theta) hat(i)-B sin (90^(@))hat(j)=Bsin theta hat(i)-B cos theta hat(j)`.
(##BMS_V01_C03_E01_078_S01.png" width="80%">
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTORS

    CENGAGE PHYSICS|Exercise Exercise Multiple Correct|5 Videos
  • VECTORS

    CENGAGE PHYSICS|Exercise Exercise Subjective|28 Videos
  • TRAVELLING WAVES

    CENGAGE PHYSICS|Exercise Integer|9 Videos
  • WORK, POWER & ENERGY

    CENGAGE PHYSICS|Exercise Archives (integer)|4 Videos

Similar Questions

Explore conceptually related problems

Vectors vec(a)=hat(i)+hat(j)+hat(k), vec(b)=hat(j)+3hat(k) and vec(c )=hat(i)-2hat(j)+hat(k) are given. Find vector vec(d) if vec(d) is perpendicular to vec(c ) and vec(d).vec(a)=6, vec(d).vec(b)=11 .

If vec(a)=3hat(i)+hat(j)-4hat(k), vec(b)=6hat(i)+5hat(j)-2hat(k) and |vec(c )|=3 , find the vector vec(c ) , which is perpendicular to both vec(a) and vec(b) .

Knowledge Check

  • Let vec(A)=hat(i)A cos theta+hat(j)A sin theta , be any vector. Another vector vec(B) which is normal to vec(A) is :-

    A
    `hat(i)B cos theta + hat(j)B sin theta`
    B
    `hat(i)B sin theta + hat(j)B cos theta`
    C
    `hat(i)B sin theta - hat(j)B cos theta`
    D
    `hat(i)A cos theta + hat(j)A sin theta`
  • Two vectors vec(A) and vec(B) lie in X-Y plane. The vector vec(B) is perpendicular to vector vec(A) . If vec(A) = hat(i) + hat(j) , then vec(B) may be :

    A
    `hat(i) - hat(j)`
    B
    `-hat(i) + hat(j)`
    C
    `-2hat(i) + 2 hat(j)`
    D
    Any of the above
  • If vec(a)=2hat(i)+2 hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=3hat(i)+hat(j) are three vectors such that vec(a)+t vec(b) is perpendicular to vec(c) , then what is t equal to ?

    A
    8
    B
    6
    C
    4
    D
    2
  • Similar Questions

    Explore conceptually related problems

    Given vec a=4hat i+5hat j-hat k,vec b=hat i-4hat j+5hat k. If |vec c|=21 and vec c is perpendicular to vec a and vec b, find in component form the vector vec c.

    Let vec a=hat i-hat j,vec b=3hat j-hat k and vec c=7hat i-hat k. Find a vector vec d which is perpendicular to both widehat a and vec b, and vec c .vec d=1

    Let a vector vec(a) be coplanar with vectors vec(b) = 2hat(i) + hat(j) + hat(k) and vec(c) = hat(i) - hat(j) + hat(k) . If vec(a) is perpendicular to vec(d) = 3hat(i) + 2hat(j) + 6hat(k) , and |vec(a)| = sqrt(10) . Then a possible value of [[vec(a),vec(b),vec(c)]] + [[vec(a), vec(b), vec(d)]] + [[vec(a),vec(c),vec(d)]] is equal to :

    If vec(a) = 2hat(i) + 2hat(j) + 3hat(k), vec(b)= - hat(i) + 2hat(j) + 3 and vec(c ) = 3hat(i) + hat(j) are three vectors such that vec(a) + t vec(b) is perpendicular to c. then what is t equal to?

    Given vec(A) = 3hat(i) + 2hat(j) and vec(B) = hat(i) + hat(j). The component of vector vec(A) along vector vec(B) is