Home
Class 12
MATHS
int (-1)^(1)| 1 - x| dx is equal to...

` int _(-1)^(1)| 1 - x| dx ` is equal to

A

`-2`

B

0

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-1}^{1} |1 - x| \, dx \), we will break it down step by step. ### Step 1: Understand the Absolute Value Function The expression \( |1 - x| \) changes based on the value of \( x \): - When \( x < 1 \), \( 1 - x \) is positive, so \( |1 - x| = 1 - x \). - When \( x = 1 \), \( |1 - x| = 0 \). - When \( x > 1 \), \( |1 - x| = x - 1 \) (not applicable here since our limits are from -1 to 1). Since we are integrating from -1 to 1, we only need to consider the case where \( x < 1 \). ### Step 2: Set Up the Integral We can split the integral into two parts because the function \( |1 - x| \) is continuous and behaves differently at \( x = 1 \): \[ I = \int_{-1}^{1} |1 - x| \, dx = \int_{-1}^{1} (1 - x) \, dx \] ### Step 3: Evaluate the Integral Now we can evaluate the integral: \[ I = \int_{-1}^{1} (1 - x) \, dx \] This can be split into two separate integrals: \[ I = \int_{-1}^{1} 1 \, dx - \int_{-1}^{1} x \, dx \] ### Step 4: Calculate Each Integral 1. Calculate \( \int_{-1}^{1} 1 \, dx \): \[ \int_{-1}^{1} 1 \, dx = [x]_{-1}^{1} = 1 - (-1) = 2 \] 2. Calculate \( \int_{-1}^{1} x \, dx \): \[ \int_{-1}^{1} x \, dx = \left[\frac{x^2}{2}\right]_{-1}^{1} = \frac{1^2}{2} - \frac{(-1)^2}{2} = \frac{1}{2} - \frac{1}{2} = 0 \] ### Step 5: Combine the Results Now we can combine the results from the two integrals: \[ I = 2 - 0 = 2 \] ### Final Answer Thus, the value of the integral \( \int_{-1}^{1} |1 - x| \, dx \) is: \[ \boxed{2} \]

To solve the integral \( I = \int_{-1}^{1} |1 - x| \, dx \), we will break it down step by step. ### Step 1: Understand the Absolute Value Function The expression \( |1 - x| \) changes based on the value of \( x \): - When \( x < 1 \), \( 1 - x \) is positive, so \( |1 - x| = 1 - x \). - When \( x = 1 \), \( |1 - x| = 0 \). - When \( x > 1 \), \( |1 - x| = x - 1 \) (not applicable here since our limits are from -1 to 1). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-1)^(1)(x|x|)dx is equal to

The value of int_(-1)^(1)(x|x|)dx is equal to

int_(0)^(b)(|1-x|dx)/(1-x) is equal to

The value of int_(-1)^(3)(|x|+|x-1|) dx is equal to

int_(-1)^1|1-x|dx is equal to -2 b. 2 c. 0 d. 4

The value of definite integral int_(-1)^(1)(7-(2x-1)dx is equal to

int_(-1)^(1)x|x|dx is equal to

The integral int_(-1)^(1) (|x+2|)/(x+2)dx is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-MHT CET Corner
  1. int (-1)^(1)| 1 - x| dx is equal to

    Text Solution

    |

  2. int (-pi/2)^(pi/2)log((2-sin x)/(2+sinx))dx is equal to

    Text Solution

    |

  3. int (0)^(pi //2)((root(n)(secx))/(root(n)(secx)+root(n)("cosec"x)))dx=

    Text Solution

    |

  4. The value of int 0 ^ 1 x ^ 2 ( 1 - x ^ 2 ) ^ (3//2 ) dx ...

    Text Solution

    |

  5. The value of int0^oox/((1+x)(x^2+1))dx is

    Text Solution

    |

  6. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  7. int(pi//2)^(pi//2)(cosx)/(1+e^(x))dx is equal to

    Text Solution

    |

  8. int(0)^(pi//2)(1)/((1+tanx))dx=?

    Text Solution

    |

  9. If int(0)^(1) tan^(-1) x dx = p , then the value of int(0)^(1) tan^(-1...

    Text Solution

    |

  10. The value of int (0)^(pi//2) log ("cosec "x) dx is

    Text Solution

    |

  11. Which of the following is true ?

    Text Solution

    |

  12. int(0)^(5) 1/((x-1)(x-2))dx is equal to

    Text Solution

    |

  13. int(pi/4)^(pi/2) e^x(logsinx+cotx)dx

    Text Solution

    |

  14. The value of int(0)^(pi) x sin^(3) x dx is

    Text Solution

    |

  15. The value of int0 ^(pi/2) (cos3x+1)/(cosx - 1) dx is equal to

    Text Solution

    |

  16. The value of underset(0)overset(1)int tan^(-1) ((2x-1)/(1+x-x^(2)))dx ...

    Text Solution

    |

  17. If f is a continous function, then

    Text Solution

    |

  18. The value of int(-pi)^(pi) sin^(3) x cos^(2) x dx is equal to

    Text Solution

    |

  19. The value of int(-1)^(1) log ((x-1)/(x+1))dx is

    Text Solution

    |

  20. int(pi//6)^(pi//3)(1)/((1+sqrt(tanx)))dx=(pi)/(12)

    Text Solution

    |

  21. int (1)^(2)e^(x) (1/x - 1/(x^(2)))dx is qual to

    Text Solution

    |