Home
Class 12
MATHS
If int(0)^(pi) x f (sin x) dx = A int (0...

If `int_(0)^(pi) x f (sin x) dx = A int _(0)^(pi//2) f(sin x) dx ,` then A is equal to

A

0

B

`pi`

C

`(pi)/(4)`

D

`2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I = \int_{0}^{\pi} x f(\sin x) \, dx \) and relate it to the integral \( \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \). ### Step-by-Step Solution: 1. **Define the Integral**: Let \( I = \int_{0}^{\pi} x f(\sin x) \, dx \). 2. **Use the Property of Definite Integrals**: We can use the property of definite integrals that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, set \( a = \pi \). Thus, we have: \[ I = \int_{0}^{\pi} x f(\sin x) \, dx = \int_{0}^{\pi} (\pi - x) f(\sin(\pi - x)) \, dx \] 3. **Simplify the Integral**: Since \( \sin(\pi - x) = \sin x \), we can rewrite the integral as: \[ I = \int_{0}^{\pi} (\pi - x) f(\sin x) \, dx \] 4. **Combine the Integrals**: Now we have two expressions for \( I \): \[ I = \int_{0}^{\pi} x f(\sin x) \, dx \] and \[ I = \int_{0}^{\pi} (\pi - x) f(\sin x) \, dx \] Adding these two equations gives: \[ 2I = \int_{0}^{\pi} \left( x + (\pi - x) \right) f(\sin x) \, dx = \int_{0}^{\pi} \pi f(\sin x) \, dx \] 5. **Factor Out Constants**: Thus, we can simplify: \[ 2I = \pi \int_{0}^{\pi} f(\sin x) \, dx \] Therefore, we find: \[ I = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) \, dx \] 6. **Relate to the Given Equation**: The problem states: \[ I = A \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \] We need to express \( \int_{0}^{\pi} f(\sin x) \, dx \) in terms of \( \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \). 7. **Use Symmetry**: The integral \( \int_{0}^{\pi} f(\sin x) \, dx \) can be split into two equal parts due to the symmetry of the sine function: \[ \int_{0}^{\pi} f(\sin x) \, dx = 2 \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \] 8. **Substitute Back**: Substituting this back into our expression for \( I \): \[ I = \frac{\pi}{2} \cdot 2 \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx = \pi \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \] 9. **Identify A**: Comparing this with the original equation \( I = A \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \), we find: \[ A = \pi \] ### Final Answer: Thus, the value of \( A \) is \( \pi \).

To solve the problem, we need to evaluate the integral \( I = \int_{0}^{\pi} x f(\sin x) \, dx \) and relate it to the integral \( \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \). ### Step-by-Step Solution: 1. **Define the Integral**: Let \( I = \int_{0}^{\pi} x f(\sin x) \, dx \). 2. **Use the Property of Definite Integrals**: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(pi)x f(sin x) dx = a int_(0)^(pi)f (sin x) dx , then a =

int_(0)^( pi/2)(sin x)*dx

int_(0)^(pi) dx/(1-sin x)=

underset is If int_(0)^( pi)xf(sin x)dx=A int_(0)^((pi)/(2))f(sin x)dx, then A

int_(0)^( pi)xf(sin x)dx=(pi)/(2)int_(0)^( pi)f(sin x)dx

int_(0)^(pi//2)sin x.sin 2x dx=

int _(0) ^(pi) (sin ^(2) x ) dx

int_0^(pi/2) sin x dx

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-MHT CET Corner
  1. If int(0)^(pi) x f (sin x) dx = A int (0)^(pi//2) f(sin x) dx , then A...

    Text Solution

    |

  2. int (-pi/2)^(pi/2)log((2-sin x)/(2+sinx))dx is equal to

    Text Solution

    |

  3. int (0)^(pi //2)((root(n)(secx))/(root(n)(secx)+root(n)("cosec"x)))dx=

    Text Solution

    |

  4. The value of int 0 ^ 1 x ^ 2 ( 1 - x ^ 2 ) ^ (3//2 ) dx ...

    Text Solution

    |

  5. The value of int0^oox/((1+x)(x^2+1))dx is

    Text Solution

    |

  6. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  7. int(pi//2)^(pi//2)(cosx)/(1+e^(x))dx is equal to

    Text Solution

    |

  8. int(0)^(pi//2)(1)/((1+tanx))dx=?

    Text Solution

    |

  9. If int(0)^(1) tan^(-1) x dx = p , then the value of int(0)^(1) tan^(-1...

    Text Solution

    |

  10. The value of int (0)^(pi//2) log ("cosec "x) dx is

    Text Solution

    |

  11. Which of the following is true ?

    Text Solution

    |

  12. int(0)^(5) 1/((x-1)(x-2))dx is equal to

    Text Solution

    |

  13. int(pi/4)^(pi/2) e^x(logsinx+cotx)dx

    Text Solution

    |

  14. The value of int(0)^(pi) x sin^(3) x dx is

    Text Solution

    |

  15. The value of int0 ^(pi/2) (cos3x+1)/(cosx - 1) dx is equal to

    Text Solution

    |

  16. The value of underset(0)overset(1)int tan^(-1) ((2x-1)/(1+x-x^(2)))dx ...

    Text Solution

    |

  17. If f is a continous function, then

    Text Solution

    |

  18. The value of int(-pi)^(pi) sin^(3) x cos^(2) x dx is equal to

    Text Solution

    |

  19. The value of int(-1)^(1) log ((x-1)/(x+1))dx is

    Text Solution

    |

  20. int(pi//6)^(pi//3)(1)/((1+sqrt(tanx)))dx=(pi)/(12)

    Text Solution

    |

  21. int (1)^(2)e^(x) (1/x - 1/(x^(2)))dx is qual to

    Text Solution

    |