Home
Class 12
MATHS
If int(0)^(pi) x f (sin x) dx = A int (0...

If `int_(0)^(pi) x f (sin x) dx = A int _(0)^(pi//2) f(sin x) dx ,` then A is equal to

A

0

B

`pi`

C

`(pi)/(4)`

D

`2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I = \int_{0}^{\pi} x f(\sin x) \, dx \) and relate it to the integral \( \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \). ### Step-by-Step Solution: 1. **Define the Integral**: Let \( I = \int_{0}^{\pi} x f(\sin x) \, dx \). 2. **Use the Property of Definite Integrals**: We can use the property of definite integrals that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, set \( a = \pi \). Thus, we have: \[ I = \int_{0}^{\pi} x f(\sin x) \, dx = \int_{0}^{\pi} (\pi - x) f(\sin(\pi - x)) \, dx \] 3. **Simplify the Integral**: Since \( \sin(\pi - x) = \sin x \), we can rewrite the integral as: \[ I = \int_{0}^{\pi} (\pi - x) f(\sin x) \, dx \] 4. **Combine the Integrals**: Now we have two expressions for \( I \): \[ I = \int_{0}^{\pi} x f(\sin x) \, dx \] and \[ I = \int_{0}^{\pi} (\pi - x) f(\sin x) \, dx \] Adding these two equations gives: \[ 2I = \int_{0}^{\pi} \left( x + (\pi - x) \right) f(\sin x) \, dx = \int_{0}^{\pi} \pi f(\sin x) \, dx \] 5. **Factor Out Constants**: Thus, we can simplify: \[ 2I = \pi \int_{0}^{\pi} f(\sin x) \, dx \] Therefore, we find: \[ I = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) \, dx \] 6. **Relate to the Given Equation**: The problem states: \[ I = A \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \] We need to express \( \int_{0}^{\pi} f(\sin x) \, dx \) in terms of \( \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \). 7. **Use Symmetry**: The integral \( \int_{0}^{\pi} f(\sin x) \, dx \) can be split into two equal parts due to the symmetry of the sine function: \[ \int_{0}^{\pi} f(\sin x) \, dx = 2 \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \] 8. **Substitute Back**: Substituting this back into our expression for \( I \): \[ I = \frac{\pi}{2} \cdot 2 \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx = \pi \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \] 9. **Identify A**: Comparing this with the original equation \( I = A \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \), we find: \[ A = \pi \] ### Final Answer: Thus, the value of \( A \) is \( \pi \).

To solve the problem, we need to evaluate the integral \( I = \int_{0}^{\pi} x f(\sin x) \, dx \) and relate it to the integral \( \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \). ### Step-by-Step Solution: 1. **Define the Integral**: Let \( I = \int_{0}^{\pi} x f(\sin x) \, dx \). 2. **Use the Property of Definite Integrals**: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)(sin x)*dx

underset is If int_(0)^( pi)xf(sin x)dx=A int_(0)^((pi)/(2))f(sin x)dx, then A

Knowledge Check

  • If int_(0)^(pi)x f(sin x) dx = a int_(0)^(pi)f (sin x) dx , then a =

    A
    `pi`
    B
    `(pi)/(3)`
    C
    `2pi`
    D
    `(pi)/(2)`
  • If int_(0)^(pi) x f(sin x)dx= k int_(0)^(pi//2) f(sin x) dx then the value of k is

    A
    2
    B
    1
    C
    `pi`
    D
    0
  • int_(0)^(pi) [2 sin x] dx =

    A
    `(2pi)/(3)`
    B
    `-(5pi)/(3)`
    C
    `-pi`
    D
    `-2pi`
  • Similar Questions

    Explore conceptually related problems

    int_(0)^( pi)xf(sin x)dx=(pi)/(2)int_(0)^( pi)f(sin x)dx

    int _(0) ^(pi) (sin ^(2) x ) dx

    int_0^(pi/2) sin x dx

    int_(0)^(pi) dx/(1-sin x)=

    int_(0)^(pi//2)sin x.sin 2x dx=