Home
Class 12
MATHS
The value of int(0)^(pi) x sin^(3) x dx ...

The value of `int_(0)^(pi) x sin^(3) x dx ` is

A

`(4pi)/3`

B

`(2pi)/3`

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} x \sin^3 x \, dx \), we can use the property of definite integrals that states: \[ \int_{0}^{A} f(x) \, dx = \int_{0}^{A} f(A - x) \, dx \] ### Step 1: Set up the integral Let \( I = \int_{0}^{\pi} x \sin^3 x \, dx \). ### Step 2: Use the property of definite integrals We can express \( I \) in another form by substituting \( x \) with \( \pi - x \): \[ I = \int_{0}^{\pi} (\pi - x) \sin^3(\pi - x) \, dx \] Since \( \sin(\pi - x) = \sin x \), we can rewrite this as: \[ I = \int_{0}^{\pi} (\pi - x) \sin^3 x \, dx \] ### Step 3: Expand the integral Now, we can expand this integral: \[ I = \int_{0}^{\pi} \pi \sin^3 x \, dx - \int_{0}^{\pi} x \sin^3 x \, dx \] This gives us: \[ I = \pi \int_{0}^{\pi} \sin^3 x \, dx - I \] ### Step 4: Solve for \( I \) Now, we can add \( I \) to both sides: \[ 2I = \pi \int_{0}^{\pi} \sin^3 x \, dx \] Thus, we have: \[ I = \frac{\pi}{2} \int_{0}^{\pi} \sin^3 x \, dx \] ### Step 5: Calculate \( \int_{0}^{\pi} \sin^3 x \, dx \) To compute \( \int_{0}^{\pi} \sin^3 x \, dx \), we can use the identity: \[ \sin^3 x = \frac{3\sin x - \sin(3x)}{4} \] Thus, \[ \int_{0}^{\pi} \sin^3 x \, dx = \int_{0}^{\pi} \frac{3\sin x - \sin(3x)}{4} \, dx \] ### Step 6: Evaluate the integrals Now we can evaluate the integral: \[ \int_{0}^{\pi} \sin x \, dx = 2 \] \[ \int_{0}^{\pi} \sin(3x) \, dx = 0 \] So, \[ \int_{0}^{\pi} \sin^3 x \, dx = \frac{1}{4} \left( 3 \cdot 2 - 0 \right) = \frac{3}{2} \] ### Step 7: Substitute back into the equation for \( I \) Now substituting back, we get: \[ I = \frac{\pi}{2} \cdot \frac{3}{2} = \frac{3\pi}{4} \] ### Step 8: Final result Thus, the value of the integral \( \int_{0}^{\pi} x \sin^3 x \, dx \) is: \[ \boxed{\frac{3\pi}{4}} \]

To solve the integral \( I = \int_{0}^{\pi} x \sin^3 x \, dx \), we can use the property of definite integrals that states: \[ \int_{0}^{A} f(x) \, dx = \int_{0}^{A} f(A - x) \, dx \] ### Step 1: Set up the integral Let \( I = \int_{0}^{\pi} x \sin^3 x \, dx \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|76 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2 pi)|cos x-sin x|dx is

int_(0)^(pi) sin 3x dx

Knowledge Check

  • int_(0)^(pi//2)sin^(3)x dx=

    A
    `(2)/(3)`
    B
    `(3)/(2)`
    C
    `-(2)/(3)`
    D
    `-(3)/(2)`
  • int_(0)^(pi) [2 sin x] dx =

    A
    `(2pi)/(3)`
    B
    `-(5pi)/(3)`
    C
    `-pi`
    D
    `-2pi`
  • The value of int_(0)^(2pi) |cos x -sin x|dx is

    A
    `(4)/(sqrt(2))`
    B
    `2sqrt(2)`
    C
    `(2)/(sqrt(2))`
    D
    `4sqrt(2)`
  • Similar Questions

    Explore conceptually related problems

    The value of int_(-1)^(3//2) |x sin pi x| dx is …..

    int_(0)^(pi) x sin x cos^(2)x\ dx

    int_(0)^(pi) x sin x. cos^(2) x dx

    The value of int_(0)^(pi//2) |sin x-cos x|dx is

    The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is