Home
Class 11
PHYSICS
A steel rod 2.5 m long is rigidly clampe...

A steel rod `2.5 m` long is rigidly clamped at its centre `C` and longitudinal waves are set up on both sides of `C` by rubbing along the rod . Young's modulus for steel ` = 2 xx 10^(11) N//m^(2)` , density of steel ` = 8000 kg//m^(3)`

If two antinodes are observed on either side of `C` , the frequency of the node in which the rod is vibrating will be

A

`1000 Hz`

B

`3000 Hz`

C

`7000 Hz`

D

`1500 Hz`

Text Solution

Verified by Experts

The correct Answer is:
B

Velocity of the longitudinal waves in the rod
`v = sqrt(Y//d) = sqrt( 2 xx 10^(11)//8000) = 5000 m//s`
The wavelength of the wire for the mode of vibration in which `2` antinodes occur is
`lambda = (1.25)/((3//4)) = (5)/(3) m`
Hence frequency of vibration
`n = (V)/(lambda) = (5000)/( 5//3) Hz = 3000 Hz`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SUPERPOSITION AND STANDING WAVES

    CENGAGE PHYSICS|Exercise Integer|9 Videos
  • SUPERPOSITION AND STANDING WAVES

    CENGAGE PHYSICS|Exercise Multiple Correct Answers Type|5 Videos
  • SUPERPOSITION AND STANDING WAVES

    CENGAGE PHYSICS|Exercise Assertion - Reasoning|6 Videos
  • SOUND WAVES AND DOPPLER EFFECT

    CENGAGE PHYSICS|Exercise Integer|16 Videos
  • THERMODYNAMICS

    CENGAGE PHYSICS|Exercise 24|1 Videos

Similar Questions

Explore conceptually related problems

Calculate the velocity of sound in steel given Young's modulus of steel =2xx10^(11) N m^(-2) and density of steel =7800 kg m^(-3) .

Young 's modulus of steel is 2.0 xx 10^(11)N m//(2) . Express it is "dyne"/cm^(2) .

Knowledge Check

  • A steel rod 2.5 m long is rigidly clamped at its centre C and longitudinal waves are set up on both sides of C by rubbing along the rod . Young's modulus for steel = 2 xx 10^(11) N//m^(2) , density of steel = 8000 kg//m^(3) If the clamp of the rod be shifted to its end A and totally four antinodes are observed in the rod when longitudinal waves are set up in it , the frequency of vibration of the rod in this mode is

    A
    `500 Hz`
    B
    `2500 Hz`
    C
    `3500 Hz`
    D
    `1500 HZ`
  • A steel rod 2.5 m long is rigidly clamped at its centre C and longitudinal waves are set up on both sides of C by rubbing along the rod . Young's modulus for steel = 2 xx 10^(11) N//m^(2) , density of steel = 8000 kg//m^(3) If the amplitude of the wave at the antinode , when it is vibrating in its fundamental mode is 2 xx 10^(-6) m , the maximum velocity of a steel particle in its vibration is

    A
    `1.25 xx 10^(-2) m//s`
    B
    `1.25 xx 10^(-3) m//s`
    C
    `1 m//s`
    D
    `0.12 m//s`
  • If the young's modulus of the material of the rod is 2 xx 10^(11) N//m^(2) and its density is 8000 kg//m^(3) then the time taken by a sound wave to traverse 1m of the rod will be

    A
    `10^(-4)s`
    B
    `2 xx 10^(-4)s`
    C
    `10^(-2)s`
    D
    `2 xx 10^(-2)s`
  • Similar Questions

    Explore conceptually related problems

    Calculate the speed of longitudinal wave in steel. Young's modulus for steel is 3xx10^(10)N//m^(2) and its density 1.2xx10^(3)kg//m^(3)

    Calculate the speed of longitudinal wave in steel. Youngs modulus for steel is 3xx10^(10)N//m^(2) and its density 1.2xx10^(3)kg//m^(3)

    For a steel rod, the Young's modulus of elasticity is 2.9xx10^(11)N//m^(2) , and the density of steel is 8xx10^(3)kg//m^(3) .What is the velocity of longitudinal waves in steel?

    Young modulus of steel is 3 xx 10^(11) N//m^(2) . When expressed in C.G.S. unit of "Dyne"//cm^(2) it will be equal to

    What is the work done per unit volume when a steel wire is stretched by 0.2% of its original length ? (Young's modulus of steel is 2xx10^(11)N//m^(2) )