Home
Class 12
MATHS
If A= [[1,1,1],[1,1,1],[1,1,1]] then...

If `A= [[1,1,1],[1,1,1],[1,1,1]]` then

A

`A^(3) = 9 A `

B

`A^(3) = 27 A `

C

`A + A = A^(2)`

D

`A^(-1)` does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem involving the matrix \( A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \), we will perform the following steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \] To perform the multiplication, we calculate each element of the resulting matrix: - The element at position (1,1): \[ 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = 3 \] - The element at position (1,2): \[ 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = 3 \] - The element at position (1,3): \[ 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = 3 \] Repeating this for all rows, we find: \[ A^2 = \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix} \] ### Step 2: Express \( A^2 \) in terms of \( A \) We can see that: \[ A^2 = 3A \] ### Step 3: Calculate \( A^3 \) Next, we calculate \( A^3 \) using the result from \( A^2 \): \[ A^3 = A^2 \cdot A = (3A) \cdot A = 3A^2 \] Substituting \( A^2 = 3A \): \[ A^3 = 3(3A) = 9A \] ### Step 4: Analyze the options Now, we can analyze the options given in the problem: 1. \( A^2 = 3A \) (True) 2. \( A^3 = 9A \) (True) 3. The inverse of \( A \) does not exist. To confirm that the inverse does not exist, we calculate the determinant of \( A \): ### Step 5: Calculate the determinant of \( A \) The determinant of a matrix with two identical rows (or columns) is zero. Since all rows of \( A \) are identical, we have: \[ \text{det}(A) = 0 \] Since the determinant is zero, the inverse of \( A \) does not exist. ### Conclusion The correct conclusions are: - \( A^2 = 3A \) - \( A^3 = 9A \) - The inverse of \( A \) does not exist.

To solve the problem involving the matrix \( A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \), we will perform the following steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

The ranks of the matrices in descending order A= [[1, 4, -1],[2, 3, 0],[0, 1, 2]] B= [[1, 1, 1],[1,1,1],[1,1,1]] C= [[1,2, 3],[2,3, 4],[ 0, 1, 2]]

24. Eigen values of [[1, 1, 1],[1,1,1],[1,1,1]] are (a) 0,00 (b) 0, 01 (c) 0, 0, 3 (d)1, 1, 1

Knowledge Check

  • If M=[[1, 1, 1], [1, 1, 1], [1, 1, 1]] , then M^(50)=

    A
    `-1`
    B
    `0`
    C
    `1`
    D
    `3^(49)M`
  • Similar Questions

    Explore conceptually related problems

    5.Find the rank of [[1,1,1],[1,1,1],[1,1,1]]

    1.If a ne0 and |[1+a,1,1],[1,1+a,1],[1,1,1+a]|=0 then a=?

    Find the value of |[1,1,1],[1,1-x,1],[1,1,1+y]| .

    Prove that : Det[[1+a,1,1],[1,1+b,1],[1,1,1+c]]=abc(1+1/a+1/b+1/c)

    If a ,b and c are all non-zero and |[1+a,1, 1],[ 1,1+b,1],[1,1,1+c]|=0, then prove that 1/a+1/b+1/c+1=0

    Prove that abs([1,1,1],[1,1+a,1],[1,1,1+b]) = ab

    Find the value of |[1,1,1],[1,1+x,1],[1,1,1+y]|