Home
Class 12
MATHS
Statement-1: For every natural number ng...

Statement-1: For every natural number `nge2`,
`(1)/(sqrt(1))+(1)/(sqrt(2))+(1)/(sqrt(3))+...+(1)/(sqrt(n))gtsqrt(n)`
Statement-2: For every natural number `nge2,`
`sqrt(n(n+1))ltn+1`

A

Statement-1 is true , Statement-2 is true, Statement-2 is correct explanation for Statement-1

B

Statement-1 is true , Statement-2 is true , Statement-2 is not a correct explanation for Statement-1

C

Statement-1 is true , Statement-2 is false

D

Statement-1 is false , Statement -2 is true .

Text Solution

Verified by Experts

Let `P(n)=(1)/(sqrt(1))+(1)/(sqrt(2))+.....+(1)/(sqrt(n))`
`therefore P(2)=(1)/(sqrt(2))+(1)w/(sqrt(2))=1.707gt sqrt(2)`
Let us assume that
`P(k)=(1)/(sqrt(1))+(1)/(sqrt(2))+.....+(1)/(sqrt(k))gt sqrt(k)` is true for `n=k+1`.
`=(1)/(sqrt(1))+(1)/(sqrt(2))+.....+(1)/(sqrt(k))+(1)/(sqrt(k+1))gt sqrt(k)+(1)/(sqrt(k+1))=sqrt(k(k+1)+1)/(sqrt((k+1)))gt(k+1)/(sqrt((k+1)))" "[therefore sqrt(k(k+1)+1)gtk,forallkge0]`
`therefore P(k+1)gt sqrt((k+1))`
By mathematical induction statement -1 is true , `forall n ge 2` .
Now , let `alpha(n)=sqrt(2(2+1))=sqrt(6)lt 3`
Let us assume that `alpha(k)=sqrt(k(k+1))lt(k+1)` is true
for `n=k+1`
LHS `=sqrt((k+1)(k+2))lt (k+2)" "[therefore (k+1)lt(k+2)]`
By mathematical induction Statement - 2 is true but Statement -2 is not a correct explanation for Statement -1.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|20 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos

Similar Questions

Explore conceptually related problems

Statement 1: For every natural number ngeq2 , 1/(sqrt(1))+1/(sqrt(2))+...+1/(sqrt(n))>sqrt(n) . Statement 2: For every natural number ngeq2,""n(n+1)

For all n in N,1+(1)/(sqrt(2))+(1)/(sqrt(3))+(1)/(sqrt(4))++(1)/(sqrt(n))

Knowledge Check

  • For every natural number n,n (n^(2)-1) is divisible by

    A
    4
    B
    6
    C
    10
    D
    None of these
  • For every natural number n, n(n^2-1) is divisible by

    A
    4
    B
    6
    C
    10
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    For every natural number n, n (n ^(2) -1) is divisible by

    lim_(n rarr oo)(1)/(sqrt(n)sqrt(n+1))+(1)/(sqrt(n)sqrt(n+2))+......+(1)/(sqrt(n)sqrt(4n))

    Prove that 1+(1)/(sqrt2)+(1)/(sqrt3)+....+(1)/(sqrtn) ge sqrtn, AA n in N

    lim_(n rarr oo)(sin(1)/(sqrt((n))))((1)/(sqrt(n+1)))^(+(1)/(sqrt(n+2))+(1)/(sqrt(n+2)))

    sum_(n=1)^(oo)(1)/(sqrt(n)+sqrt(n+1))

    lim_(n rarr oo)(1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)+1))+(1)/(sqrt(n^(2) +2))+...(.1)/(sqrt(n^(2)+2n))=