Home
Class 12
PHYSICS
If x=2cost-cos2t,y=2sint-sin2t,then at t...

If `x=2cost-cos2t`,`y=2sint-sin2t`,then at `t=(pi)/(4)`,`(dy)/(dx)=`

A

`sqrt2+1`

B

`sqrt(2+1)`

C

`(sqrt(2+1))/(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(t = \frac{\pi}{4}\) for the given parametric equations \(x = 2\cos t - \cos 2t\) and \(y = 2\sin t - \sin 2t\), we will follow these steps: ### Step 1: Differentiate \(y\) with respect to \(t\) We start by differentiating \(y\) with respect to \(t\): \[ y = 2\sin t - \sin 2t \] Using the chain rule, we differentiate: \[ \frac{dy}{dt} = 2\cos t - \frac{d}{dt}(\sin 2t) \] Using the derivative of \(\sin 2t\), which is \(2\cos 2t\): \[ \frac{dy}{dt} = 2\cos t - 2\cos 2t \] ### Step 2: Differentiate \(x\) with respect to \(t\) Next, we differentiate \(x\) with respect to \(t\): \[ x = 2\cos t - \cos 2t \] Differentiating gives: \[ \frac{dx}{dt} = -2\sin t + \frac{d}{dt}(\cos 2t) \] Using the derivative of \(\cos 2t\), which is \(-2\sin 2t\): \[ \frac{dx}{dt} = -2\sin t + 2\sin 2t \] ### Step 3: Find \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\) using the formula: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{2\cos t - 2\cos 2t}{-2\sin t + 2\sin 2t} \] This simplifies to: \[ \frac{dy}{dx} = \frac{2(\cos t - \cos 2t)}{2(-\sin t + \sin 2t)} = \frac{\cos t - \cos 2t}{-\sin t + \sin 2t} \] ### Step 4: Evaluate \(\frac{dy}{dx}\) at \(t = \frac{\pi}{4}\) Now we substitute \(t = \frac{\pi}{4}\): \[ \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, \quad \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] Also, we need \(\cos\left(\frac{\pi}{2}\right) = 0\) and \(\sin\left(\frac{\pi}{2}\right) = 1\): \[ \frac{dy}{dx} = \frac{\frac{1}{\sqrt{2}} - 0}{-\frac{1}{\sqrt{2}} + 1} \] This simplifies to: \[ \frac{dy}{dx} = \frac{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}} + 1} = \frac{\frac{1}{\sqrt{2}}}{1 - \frac{1}{\sqrt{2}}} \] To simplify further: \[ = \frac{1}{\sqrt{2}(1 - \frac{1}{\sqrt{2}})} = \frac{1}{\sqrt{2} \cdot \frac{\sqrt{2} - 1}{\sqrt{2}}} = \frac{1}{\sqrt{2} - 1} \] Now, rationalizing the denominator: \[ = \frac{1(\sqrt{2} + 1)}{(\sqrt{2} - 1)(\sqrt{2} + 1)} = \frac{\sqrt{2} + 1}{2 - 1} = \sqrt{2} + 1 \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) at \(t = \frac{\pi}{4}\) is: \[ \frac{dy}{dx} = \sqrt{2} + 1 \]

To find \(\frac{dy}{dx}\) at \(t = \frac{\pi}{4}\) for the given parametric equations \(x = 2\cos t - \cos 2t\) and \(y = 2\sin t - \sin 2t\), we will follow these steps: ### Step 1: Differentiate \(y\) with respect to \(t\) We start by differentiating \(y\) with respect to \(t\): \[ y = 2\sin t - \sin 2t \] Using the chain rule, we differentiate: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS|Exercise subjective type|51 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS|Exercise Comprehension Type|31 Videos
  • CAPACITOR AND CAPACITANCE

    CENGAGE PHYSICS|Exercise Integer|5 Videos
  • CENTRE OF MASS CONVERSATION OF MOMENTUM AND COLLISION

    CENGAGE PHYSICS|Exercise Question Bank|38 Videos

Similar Questions

Explore conceptually related problems

If x=2cott+cos2t,y=2sint-sin2t,"find "(dy)/(dx)"at t"=(pi)/(4)

If x=2cos t-cos2t,y=2sin t-sin2t,tind(d^(2)y)/(dx^(2)) at t=(pi)/(2)

Knowledge Check

  • If x= 2cost+cos 2t,y=2sin t-sin 2t ,then " at " t= ( pi)/(4) ,(dy)/(dx)

    A
    ` 1+ sqrt2`
    B
    ` -1-sqrt2 `
    C
    ` sqrt2-1`
    D
    ` 1-sqrt2`
  • If x=2cost-cos2t,y=2sint-sin2t," then "(dy)/(dx)=

    A
    `tant`
    B
    `cot((3t)/(2))`
    C
    `tan((3t)/(2))`
    D
    `cott`
  • If x=sin tcos 2t,y= cos tsin 2t ,then " at " t= (pi)/(4) ,(dy)/(dx)

    A
    ` (-1)/(2)`
    B
    ` (1)/(2)`
    C
    ` -2`
    D
    ` 2`
  • Similar Questions

    Explore conceptually related problems

    x=3cost-2cos^(3)t,y=3sint-2sin^(3)t

    If x=2cost-cos2t & y=2sint-sin2t , find the value of (d^2y//dx^2) when t=(pi//2) .

    If x=2cos t-cos2t,quad y=2sin t-sin2t find (d^(2)y)/(dx^(2)) at t=(pi)/(2)

    If x=a(2cost+cos2t),y=a(2sint+sin2t)," then "(dy)/(dx)=

    If x =3 cos t-2cos ^(3) t,y =3 sin t- 2 sin ^(3) t,then (dy)/(dx) =