Home
Class 11
PHYSICS
The diameter of a gas molecule is 2.4 xx...

The diameter of a gas molecule is `2.4 xx 10^(-10) m`. Calculate the mean free path at NTP. Given Boltzmann constant `k = 1.38 xx 10^(-23) J molecule^(-1) K^(-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the mean free path of a gas molecule at normal temperature and pressure (NTP), we can use the formula: \[ \lambda = \frac{k_B \cdot T}{\sqrt{2} \cdot \pi \cdot d^2 \cdot P} \] Where: - \( \lambda \) = mean free path - \( k_B \) = Boltzmann constant = \( 1.38 \times 10^{-23} \, \text{J molecule}^{-1} \text{K}^{-1} \) - \( T \) = temperature in Kelvin = \( 273 \, \text{K} \) (at NTP) - \( d \) = diameter of the gas molecule = \( 2.4 \times 10^{-10} \, \text{m} \) - \( P \) = pressure = \( 1.01 \times 10^5 \, \text{N/m}^2 \) (at NTP) ### Step-by-Step Solution: 1. **Identify the given values**: - Diameter of the gas molecule, \( d = 2.4 \times 10^{-10} \, \text{m} \) - Boltzmann constant, \( k_B = 1.38 \times 10^{-23} \, \text{J molecule}^{-1} \text{K}^{-1} \) - Temperature, \( T = 273 \, \text{K} \) - Pressure, \( P = 1.01 \times 10^5 \, \text{N/m}^2 \) 2. **Substitute the values into the mean free path formula**: \[ \lambda = \frac{(1.38 \times 10^{-23}) \cdot (273)}{\sqrt{2} \cdot \pi \cdot (2.4 \times 10^{-10})^2 \cdot (1.01 \times 10^5)} \] 3. **Calculate the denominator**: - First, calculate \( d^2 \): \[ d^2 = (2.4 \times 10^{-10})^2 = 5.76 \times 10^{-20} \, \text{m}^2 \] - Now calculate \( \sqrt{2} \cdot \pi \cdot d^2 \cdot P \): \[ \sqrt{2} \approx 1.414 \] \[ \pi \approx 3.14 \] \[ \sqrt{2} \cdot \pi \cdot d^2 \cdot P = 1.414 \cdot 3.14 \cdot (5.76 \times 10^{-20}) \cdot (1.01 \times 10^5) \] \[ = 1.414 \cdot 3.14 \cdot 5.76 \times 10^{-15} \approx 2.54 \times 10^{-14} \] 4. **Calculate the numerator**: \[ k_B \cdot T = (1.38 \times 10^{-23}) \cdot (273) \approx 3.77 \times 10^{-21} \] 5. **Calculate the mean free path**: \[ \lambda = \frac{3.77 \times 10^{-21}}{2.54 \times 10^{-14}} \approx 1.48 \times 10^{-7} \, \text{m} \] ### Final Answer: The mean free path at NTP is approximately \( \lambda \approx 1.48 \times 10^{-7} \, \text{m} \).

To calculate the mean free path of a gas molecule at normal temperature and pressure (NTP), we can use the formula: \[ \lambda = \frac{k_B \cdot T}{\sqrt{2} \cdot \pi \cdot d^2 \cdot P} \] Where: - \( \lambda \) = mean free path ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BEHAVIOUR OF PERFECT GAS & KINETIC THEORY

    PRADEEP|Exercise Multiple choice questions-I|59 Videos
  • BEHAVIOUR OF PERFECT GAS & KINETIC THEORY

    PRADEEP|Exercise Multiple choice questions-II|8 Videos
  • BEHAVIOUR OF PERFECT GAS & KINETIC THEORY

    PRADEEP|Exercise Fill in the blanks|10 Videos
  • GRAVIATION

    PRADEEP|Exercise Assertion-Reason Type Questions|19 Videos

Similar Questions

Explore conceptually related problems

The average translational kinetic energy of nitrogen gas molecule is 0.02eV (1eV - 1.6 xx 10^(-19)J) . Calculate the temperatuire of the gas. Boltzmann constant k = 1.38 xx 10^(-23) J//K .

The average translational kinetic energy of air molecules is 0.040 eV (1eV=1.6xx10^(-19)J). Calculate the temperature of the air. Blozmann constant K=1.38xx10^(-23) J K^(-1).

Knowledge Check

  • The average translational kinetic energy of nitrogen gas molecules is 0.02 eV(1 eV = 1.6xx10^(-19)J ). Calculate the temperature of the gas. Boltzmann constant k=1.38xx10^(-28)J//K .

    A
    193.1 K
    B
    1011 K
    C
    212 K
    D
    154.5 K
  • The rms speed of particle of mass 5 xx 10^(-17) kg . In their random motion in air at NTP will be (Boltzmann's constant) K = 1.38 xx 10^(-23) J//K

    A
    `15 xx 10 + m//s`
    B
    `15 xx 10^(-3) m//s`
    C
    `10 xx 10^(-2)`
    D
    `1.5 xx 10^(2) m//s`
  • Similar Questions

    Explore conceptually related problems

    At what temperature the kinetic energy of a molecule will be equal to 2.8 xx 10^(-20) J ? Boltzmann constant (k_(B)) = 1.4 xx 10^(-23) J "molecule"^(-1)K^(-1)

    Calculate the temperature at which the average K.E. of a molecule of a gas will be the same as that of an electron accelerated through 1 volt. Boltzmann constant = 1.4 xx 10^(-23) J "molecule"^(-1) K^(-1) , charge of an electron = 1.6 xx 10^(-19)C .

    At what temperature will the average velocity of oxygen molecules be sufficient to escape from the earth. Given mass of oxygen molecule = 5.34 xx 10^(-26) kg . Boltzmann constant, k = 1.38 xx 10^(-23) J "molecule"^(-1) K^(-1) . Escape velocity of earth = 11.0 km s^(-1) .

    How many degrees of freedom are associated with 2 gram of helium at NTP ? Calculate the amount of heat energy required to raise the temp. Of this amount from 27^(@) C to 127^(@) C . Given Boltzmann constant k_(B) = 1.38 xx 10^(-16) erg "molecule"^(-1) K^(-1) and Avogadro's number =6.02 xx 10^(23) .

    An electric bulb of volume 250 cm^(3) was sealed off during manufacture at a pressure of 10^(-3) mm of Hg at 27^(@) C . Find the number of molecules in the bulb. Given, Boltzmann constant =1.38 xx 10^(-16) "erg molecule"^(-1) ^(@)C^(-1) .

    At what temperature the root mean square velocity is equal to escape velocity from the surface of earth for hydrogen and for oxygen ? Given radius of earth = 6.4 xx 10^(6) m , g = 9.8 ms^(-2) . Boltzmann constant = 1.38 xx 10^(-23) J "molecule"^(-1) .