Home
Class 12
MATHS
int(0)^(pi//4)e^(x)(1+tan x + tan^(2)x)d...

`int_(0)^(pi//4)e^(x)(1+tan x + tan^(2)x)dx=`

A

tan 1

B

e. tan 1

C

`e^(pi//4)`

D

tan e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{0}^{\frac{\pi}{4}} e^{x} (1 + \tan x + \tan^2 x) \, dx, \] we can break it down into manageable steps. ### Step 1: Rewrite the integral We can rearrange the expression inside the integral: \[ \int_{0}^{\frac{\pi}{4}} e^{x} (1 + \tan x + \tan^2 x) \, dx = \int_{0}^{\frac{\pi}{4}} e^{x} \tan^2 x \, dx + \int_{0}^{\frac{\pi}{4}} e^{x} \tan x \, dx + \int_{0}^{\frac{\pi}{4}} e^{x} \, dx. \] ### Step 2: Evaluate each integral separately 1. **First Integral**: \(\int_{0}^{\frac{\pi}{4}} e^{x} \, dx\) This integral can be solved using the formula for the integral of \(e^{x}\): \[ \int e^{x} \, dx = e^{x} + C. \] Evaluating from \(0\) to \(\frac{\pi}{4}\): \[ \left[ e^{x} \right]_{0}^{\frac{\pi}{4}} = e^{\frac{\pi}{4}} - e^{0} = e^{\frac{\pi}{4}} - 1. \] 2. **Second Integral**: \(\int_{0}^{\frac{\pi}{4}} e^{x} \tan x \, dx\) We can use integration by parts here. Let \(u = \tan x\) and \(dv = e^{x} \, dx\). Then, \(du = \sec^2 x \, dx\) and \(v = e^{x}\). Using integration by parts: \[ \int u \, dv = uv - \int v \, du, \] we get: \[ \int e^{x} \tan x \, dx = e^{x} \tan x - \int e^{x} \sec^2 x \, dx. \] We can evaluate this from \(0\) to \(\frac{\pi}{4}\). 3. **Third Integral**: \(\int_{0}^{\frac{\pi}{4}} e^{x} \tan^2 x \, dx\) This can also be evaluated using integration by parts or substitution, but it can be simplified using the identity \(\tan^2 x = \sec^2 x - 1\). ### Step 3: Combine results After evaluating all integrals, we combine the results: \[ \int_{0}^{\frac{\pi}{4}} e^{x} (1 + \tan x + \tan^2 x) \, dx = \left( e^{\frac{\pi}{4}} - 1 \right) + \text{(result from second integral)} + \text{(result from third integral)}. \] ### Final Step: Evaluate limits Finally, we substitute the limits into the expressions obtained from the integrals and simplify to get the final result.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : int_(0)^(pi//4)e^(x)(1+tanx+tan^(2)x)dx

int_(0)^(pi//4) e^(x) (tan x+ sec^(2)x) dx

Knowledge Check

  • int_(0)^(pi//2)(x)/(tan x)dx=

    A
    `(pi)/(2)log 2`
    B
    log 2
    C
    `pi log 3`
    D
    `pi log 4`
  • int_(0)^(pi//4)(tan^(4)x + tan^(2)x)dx=

    A
    1
    B
    `(1)/(2)`
    C
    `(1)/(3)`
    D
    `(1)/(4)`
  • int_(0)^(pi)e^(x)(tan x + sec^(2)x) dx = ______.

    A
    0
    B
    1
    C
    `-1`
    D
    `-e^(pi)`
  • Similar Questions

    Explore conceptually related problems

    int_(0)^(pi//4) tan x dx

    int_(0)^(pi//3) |tan x-1| dx =

    int_(0)^(pi) (dx)/(1+2^(tan x)) =

    int_(0)^(pi//4) (sec^(2)x)/((1+tan x)(2+tan x))dx is equal to

    If int_(0)^(pi) x f (cos^(2) x + tan ^(4) x ) dx = k int_(0)^(pi//2) f(cos^(2) x + tan ^(4) x ) dx then k =