Home
Class 12
MATHS
If x=t*logt" and "y=t^(t)," then: "(dy)/...

If `x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=`

A

`xe^(y)`

B

`t^(t)`

C

`e^(-x)`

D

`logt`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=t^(2)-t+1," then: "(dy)/(dx)=

If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

Knowledge Check

  • If : x=logt" and "y=(1)/(t) then :

    A
    `(d^(2)y)/(dx^(2))-2t=0`
    B
    `(d^(2)y)/(dx^(2))+Y=0`
    C
    `(d^(2)y)/(dx^(2))+(dy)/(dx)=0`
    D
    `(d^(2)y)/(dx^(2))-(dy)/(dx)=0`
  • If x=t log t ,y =t^(t) ,then (dy)/(dx)=

    A
    ` -e^(-x)`
    B
    ` e^(-x)`
    C
    ` -e^(x)`
    D
    ` y`
  • If x=at,y=(a)/(t)," then "(dy)/(dx)=

    A
    `(1)/(t^(2))`
    B
    `t^(2)`
    C
    `-t^(2)`
    D
    `-(1)/(t^(2))`
  • Similar Questions

    Explore conceptually related problems

    If x=t^(3) and y=t^(4) then (dy)/(dx) at "t=-1" is

    If x=2t-3t^(2) and y=6t^(3) then (dy)/(dx) at point (-1,6) is

    If x=a(t-sin t) and y=a(1+cos t) then (dy)/(dx)=

    If x=tan^(-1)t, and y=t^(3), find (dy)/(dx)

    If x=(t+1)/(t),y=(t-1)/(t)," then "(dy)/(dx)=