Home
Class 12
MATHS
int(0)^(pi//2)(e^(sin x))/(e^(sin x)+e^(...

`int_(0)^(pi//2)(e^(sin x))/(e^(sin x)+e^(cos x))dx=`

A

`e^(pi)`

B

0

C

`(pi)/(2)`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{e^{\sin x}}{e^{\sin x} + e^{\cos x}} \, dx, \] we can use a property of definite integrals. Specifically, we can use the substitution \( x = \frac{\pi}{2} - t \), which gives us: \[ dx = -dt. \] When \( x = 0 \), \( t = \frac{\pi}{2} \), and when \( x = \frac{\pi}{2} \), \( t = 0 \). Thus, we can rewrite the integral as: \[ I = \int_{\frac{\pi}{2}}^{0} \frac{e^{\sin\left(\frac{\pi}{2} - t\right)}}{e^{\sin\left(\frac{\pi}{2} - t\right)} + e^{\cos\left(\frac{\pi}{2} - t\right)}} (-dt). \] This simplifies to: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{e^{\cos t}}{e^{\cos t} + e^{\sin t}} \, dt. \] Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{e^{\sin x}}{e^{\sin x} + e^{\cos x}} \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{e^{\cos x}}{e^{\cos x} + e^{\sin x}} \, dx \) Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{e^{\sin x}}{e^{\sin x} + e^{\cos x}} + \frac{e^{\cos x}}{e^{\cos x} + e^{\sin x}} \right) dx. \] The denominators are the same, so we can combine the fractions: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{e^{\sin x} + e^{\cos x}}{e^{\sin x} + e^{\cos x}} \, dx = \int_{0}^{\frac{\pi}{2}} 1 \, dx. \] Calculating the integral: \[ \int_{0}^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2}. \] Thus, we have: \[ 2I = \frac{\pi}{2}. \] Dividing both sides by 2 gives: \[ I = \frac{\pi}{4}. \] Therefore, the value of the integral is: \[ \boxed{\frac{\pi}{4}}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

Evaluate of each of the following integral: int_0^(2pi)(e^(sinx))/(e^(sinx)+e^(-sin x))dx

int sin x*e^(cos x)dx

Knowledge Check

  • int_(0)^(pi)(e^(cos x))/(e^(cos x)+e^(-cos x))dx=

    A
    `pi`
    B
    `(pi)/(3)`
    C
    `(pi)/(2)`
    D
    `(pi)/(4)`
  • int_(0)^(pi//2)(e^(sin x)- e^(cos x)))dx=

    A
    1
    B
    `-1`
    C
    0
    D
    `pi`
  • int_(0)^(pi//4)e^(x)sin x dx =

    A
    `(e^(pi//4))/(sqrt(2))`
    B
    `(1)/(2)`
    C
    `sqrt(2)e^(pi//4)`
    D
    `e^(pi//4)`
  • Similar Questions

    Explore conceptually related problems

    7. int_(0)^( pi/2)e^(x)((1+sin x)/(1+cos x))dx

    solve int_(0)^( pi/2)e^(sin x)dx

    int _ (- pi) ^ (pi) (e ^ (sin x)) / (e ^ (sin x) + e ^ (- sin x)) dx

    int_(0)^( pi/4)e^(sin x)((x cos^(3)x-sin x)/(cos^(2)x))dx

    int_(0)^( pi/2)e^(x)((1+sin x)/(1+cos x))dx=