Home
Class 12
MATHS
int(0)^(pi//2)(sin 2x)/(2+2sin^(2)x+cos^...

`int_(0)^(pi//2)(sin 2x)/(2+2sin^(2)x+cos^(2)x)dx=`

A

`log((3)/(4))`

B

`-log((3)/(4))`

C

`2log ((4)/(3))`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin 2x}{2 + 2\sin^2 x + \cos^2 x} \, dx, \] we will simplify the integrand step by step. ### Step 1: Simplifying the Denominator First, we rewrite the denominator: \[ 2 + 2\sin^2 x + \cos^2 x = 2 + \sin^2 x + \sin^2 x + \cos^2 x. \] Using the Pythagorean identity \(\sin^2 x + \cos^2 x = 1\), we can simplify this to: \[ 2 + 2\sin^2 x + \cos^2 x = 2 + 1 + \sin^2 x = 3 + \sin^2 x. \] Thus, we can rewrite our integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin 2x}{3 + \sin^2 x} \, dx. \] ### Step 2: Using the Identity for \(\sin 2x\) Recall that \(\sin 2x = 2 \sin x \cos x\). We can substitute this into our integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{2 \sin x \cos x}{3 + \sin^2 x} \, dx. \] ### Step 3: Substitution Let’s use the substitution \(u = \sin x\), which gives \(du = \cos x \, dx\). The limits change as follows: when \(x = 0\), \(u = 0\) and when \(x = \frac{\pi}{2}\), \(u = 1\). Thus, we have: \[ I = \int_{0}^{1} \frac{2u}{3 + u^2} \, du. \] ### Step 4: Splitting the Integral Now we can split the integral: \[ I = 2 \int_{0}^{1} \frac{u}{3 + u^2} \, du. \] ### Step 5: Using Partial Fraction Decomposition To evaluate the integral, we can use a simple substitution. Let \(v = 3 + u^2\), then \(dv = 2u \, du\) or \(du = \frac{dv}{2u}\). When \(u = 0\), \(v = 3\) and when \(u = 1\), \(v = 4\). The integral becomes: \[ I = \int_{3}^{4} \frac{1}{v} \, dv = \ln |v| \bigg|_{3}^{4} = \ln 4 - \ln 3 = \ln \frac{4}{3}. \] ### Final Step: Multiply by 2 Since we have \(2\) from our earlier step, we multiply: \[ I = 2 \ln \frac{4}{3}. \] Thus, the final result is: \[ I = 2 \ln \frac{4}{3}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)(sin^(2)x)/(sin^(2)x+cos^(2)x)dx

Prove that: int_(0)^(2 pi)(x sin^(2n)x)/(sin^(2n)+cos^(2n)x)dx=pi^(2)

Knowledge Check

  • int_(0) ^(pi//2) (sin x) /(sin x + cos x )^(2)dx=

    A
    `1/(2sqrt(2)) log ((sqrt(2)+1)/(sqrt(2)-1))`
    B
    `1/(2sqrt(2)) log ((sqrt(2)-1)/(sqrt(2)+1))`
    C
    `1/(sqrt(2)) log ((sqrt(2)+1)/(sqrt(2)-1))`
    D
    `1/(sqrt(2)) log ((sqrt(2)-1)/(sqrt(2)+1))`
  • int_(0)^(pi//2) (cos 2x)/((sin x +cos x)^(2)) dx =

    A
    0
    B
    `(pi)/(4)`
    C
    `(pi)/(2)`
    D
    none
  • int_(0)^(pi//2)(1+sin x)/(2+sin x + cos x) dx=

    A
    1
    B
    2
    C
    `(pi)/(2)`
    D
    `(pi)/(4)`
  • Similar Questions

    Explore conceptually related problems

    int_(0)^( pi)(sin x)/(1+cos^(2)x)dx =

    int_(0)^( pi/2)(sin2x)/(sin^(4)x+cos^(4)x)backslash dx

    int_(0)^(pi//2)(sin^(3//2)x)/((sin^(3//2)x+cos^(3//2)x))dx=(pi)/(4)

    int_(0)^(pi//2)sin x.sin 2x dx=

    int_(0)^(pi//2) (x sin x cos x)/(sin^(4) x + cos^(4)x) dx =