Home
Class 12
MATHS
int(-pi//2)^(pi//2)(sin^(2)x.cos^(2)x(si...

`int_(-pi//2)^(pi//2)(sin^(2)x.cos^(2)x(sin x+cos x))dx=`

A

`(15)/(4)`

B

`(4)/(15)`

C

`(5)/(16)`

D

`(16)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^2 x (\sin x + \cos x) \, dx, \] we will use the property of definite integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx. \] ### Step 1: Apply the property of definite integrals Let’s denote the integral as: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^2 x (\sin x + \cos x) \, dx. \] Using the property, we substitute \( x \) with \( -x \): \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2(-x) \cos^2(-x) (\sin(-x) + \cos(-x)) \, dx. \] ### Step 2: Simplify the expression Using the properties of sine and cosine: - \(\sin(-x) = -\sin x\) - \(\cos(-x) = \cos x\) We can rewrite the integral: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^2 x (-\sin x + \cos x) \, dx. \] ### Step 3: Set up the second equation Now we have two expressions for \( I \): 1. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^2 x (\sin x + \cos x) \, dx \) (Equation 1) 2. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^2 x (-\sin x + \cos x) \, dx \) (Equation 2) ### Step 4: Add the two equations Adding both equations: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^2 x \left((\sin x + \cos x) + (-\sin x + \cos x)\right) \, dx. \] This simplifies to: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^2 x (2\cos x) \, dx. \] ### Step 5: Factor out the constant We can factor out the 2: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^2 x \cos x \, dx. \] ### Step 6: Change of variables Let \( t = \sin x \), then \( dt = \cos x \, dx \). When \( x = -\frac{\pi}{2} \), \( t = -1 \) and when \( x = \frac{\pi}{2} \), \( t = 1 \). Thus, the integral becomes: \[ I = \int_{-1}^{1} t^2 (1 - t^2) \, dt. \] ### Step 7: Expand and integrate Expanding the integrand: \[ I = \int_{-1}^{1} (t^2 - t^4) \, dt. \] Now, we can integrate term by term: \[ I = \left[ \frac{t^3}{3} - \frac{t^5}{5} \right]_{-1}^{1}. \] ### Step 8: Evaluate the limits Calculating at the limits: \[ I = \left( \frac{1^3}{3} - \frac{1^5}{5} \right) - \left( \frac{(-1)^3}{3} - \frac{(-1)^5}{5} \right). \] This simplifies to: \[ I = \left( \frac{1}{3} - \frac{1}{5} \right) - \left( -\frac{1}{3} + \frac{1}{5} \right). \] ### Step 9: Combine the results Combining these gives: \[ I = \frac{1}{3} - \frac{1}{5} + \frac{1}{3} - \frac{1}{5} = \frac{2}{3} - \frac{2}{5}. \] Finding a common denominator (15): \[ I = \frac{10}{15} - \frac{6}{15} = \frac{4}{15}. \] ### Final Result Thus, the value of the integral is: \[ I = \frac{4}{15}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(-pi//2)^(pi//2) sin^(2)x cos^(2) x(sin xcos x)dx=

int_(-pi)^(pi)sin^(2)x.cos^(2)x dx=

int_(-pi//2)^(pi//2)(sin^(4)x)/(sin^(4)x + cos^(4)x)dx=

int_(0)^(pi/2)(sin^(2)x*cos x)dx=

int_(-pi//2)^(pi//2)(sin^(2n-1)x)/(1+cos^(2n)x)dx=

int_(-pi//2)^(pi//2) x sin x cos x dx=

The value of int_((pi)/(6))^((pi)/(2))((1+sin2x+cos2x)/(sin x+cos x))dx is equal to

int_(0)^( pi/2)sin^(2)x cos x dx

int_(-pi/2)^(pi/2)(a cos^(2)x+b sin^(2)x)dx

MARVEL PUBLICATION-INTEGRATION - DEFINITE INTEGRALS -MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)
  1. The integral underset(0)overset(a)int (g(x))/(f(x)+f(a-x))dx vanishes...

    Text Solution

    |

  2. If I(n)=underset(0)overset(pi//4)inttan^(n)x dx, then (1)/(I(2)+I(4)...

    Text Solution

    |

  3. The value int(-2)^(2) (plog ((1+x)/(1-x)) + q log ((1-x)/(1+x))^(-2) +...

    Text Solution

    |

  4. lim(n to oo)((sum(r=1)^(n)r^(2))(sum(r=1)^(n)r^(3)))/((sum(r=1)^(n)r^(...

    Text Solution

    |

  5. If : int(0)^(pi)ln(sin x) dx = k, then : int(0)^(pi//4)ln (1+tan x)=

    Text Solution

    |

  6. int(pi/3)^(pi/2) sqrt(1+cosx)/(1-cosx)^(5/2) dx

    Text Solution

    |

  7. int(-pi//2)^(pi//2)(sin^(2)x.cos^(2)x(sin x+cos x))dx=

    Text Solution

    |

  8. If : int(ln 2)^(x)(1)/(sqrt(e^(t)-1))dt=(pi)/(6), then : x =

    Text Solution

    |

  9. int(0)^(pi//2)sin x.cos x. sqrt(a^(2).sin^(2)x+b^(2).cos^(2)x)dx=

    Text Solution

    |

  10. If int0^oo (x^2 \ dx)/((x^2+a^2)(x^2+b^2)(x^2+c^2)) = pi/(2(a+b)(b+c)(...

    Text Solution

    |

  11. int(0)^(2) (2x-2)/(2x-x^(2)) dx is equal to

    Text Solution

    |

  12. int(1)^(e^(99))(sin(pi.ln x))/(x)dx=

    Text Solution

    |

  13. Evaluate : lim(n-> oo) (1^4+2^4+3^4+...+n^4)/n^5 - lim(n->oo) (1^3+2^3...

    Text Solution

    |

  14. int(0) ^(pi//2) ((sin x +cos x )^(2))/sqrt(1+ sin 2x)dx =

    Text Solution

    |

  15. The value of int(8 log(1+x))/(1+x^(2)) dx is

    Text Solution

    |

  16. Find lim(ntooo)(1/(n+1)+1/(n+2)+...+1/(6n))

    Text Solution

    |

  17. (x.sin^(-1)x^(2))/(sqrt(1-x^(4)))

    Text Solution

    |

  18. overset(2pi) underset(0)int(xsin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx,n gt 0...

    Text Solution

    |

  19. If f(x)=Asin((pix)/2)+B, f'(1/2)=sqrt2 and int0^1 f(x)dx=(2A)/pi then ...

    Text Solution

    |

  20. int(pi//4)^(3pi//4)(dx)/(1+cos x)=

    Text Solution

    |