Home
Class 12
MATHS
(e^(y)+1)cos x dx+e^(y)sin x dy =0...

`(e^(y)+1)cos x dx+e^(y)sin x dy =0`

A

`(e^(y)+1)sin x =c`

B

`(e^(y)+1)=c tan x`

C

`e^(y)sin x + cos x=c`

D

`(e^(x)+1)sin y=c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given differential equation \((e^{y}+1)\cos x \, dx + e^{y}\sin x \, dy = 0\), we will follow these steps: ### Step 1: Rearranging the Equation We start by rearranging the equation to separate the variables \(x\) and \(y\): \[ (e^{y}+1)\cos x \, dx = -e^{y}\sin x \, dy \] Now, we can write: \[ \frac{\cos x}{\sin x} \, dx = -\frac{e^{y}}{e^{y}+1} \, dy \] ### Step 2: Simplifying the Equation Recognizing that \(\frac{\cos x}{\sin x} = \cot x\), we rewrite the equation: \[ \cot x \, dx = -\frac{e^{y}}{e^{y}+1} \, dy \] ### Step 3: Integrating Both Sides Now we integrate both sides: \[ \int \cot x \, dx = -\int \frac{e^{y}}{e^{y}+1} \, dy \] The integral of \(\cot x\) is: \[ \int \cot x \, dx = \ln |\sin x| + C_1 \] For the right-hand side, we can use substitution. Let \(t = e^{y} + 1\), then \(dt = e^{y} \, dy\) or \(dy = \frac{dt}{e^{y}} = \frac{dt}{t-1}\). Thus, we can rewrite the integral: \[ -\int \frac{e^{y}}{e^{y}+1} \, dy = -\int \frac{t-1}{t} \cdot \frac{dt}{t-1} = -\int \left(1 - \frac{1}{t}\right) dt \] This simplifies to: \[ -\left(t - \ln |t|\right) + C_2 = -\left(e^{y} + 1 - \ln |e^{y}+1|\right) + C_2 \] ### Step 4: Combining Results Combining both integrals, we have: \[ \ln |\sin x| = -\left(e^{y} + 1 - \ln |e^{y}+1|\right) + C \] ### Step 5: Exponentiating Both Sides Exponentiating both sides gives us: \[ |\sin x| = C \cdot (e^{y}+1)e^{-e^{y}} \] ### Final Solution Thus, we can express the final solution as: \[ e^{y} + 1 = C \sin x \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

If y=y(x) is the solution of the equation e^(sin y) cos y""(dy)/(dx) +e^(sin y) cos x = cos x,y (0)=0, then 1+y ((pi)/(6)) +( sqrt(3))/(2) y((pi)/(3)) +(1)/( sqrt(2)) y((pi)/(4)) is equal to

Solve the following differential equation: (1+ e ^(y/x)) dy + e^(y/x) (1- y/x) dx = 0 (x ne 0)

Knowledge Check

  • Solution of the equation (1+e^(x//y)) dx+e^(x//y)(1-x/y) dy=0 is

    A
    `x+ye^(x//y)=c`
    B
    `x-ye(x//y)=c`
    C
    `y+xe(x//y)=c`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    If y=(e^(2x)cos x)/(x sin x) then (dy)/(dx)=

    Solve: (1+2e^(x/y))dx+2e^(x/y)(1-x/y)dy=0

    Solve (1+2e^(x/y))dx+2e^(x/y)(1-x/y)dy=0

    Solve each of the following differential equations cos y "" dx +(1+2e^(-x)) sin y "" dy=0 .

    Solution of the differential equation (y cos x+2xe^(y))+(sin x+x^(2)e^(y)-1)(dy)/(dx)=0, is

    e ^ (y) (dy) / (dx) + x ^ (3) cos x ^ (2) = 0

    The solution of (dy) / (dx) + (y cos x + sin y + y) / (sin x + x cos y + x) = 0 is