Home
Class 12
MATHS
Let f(x) = tan^(-1) ((1+cos x)/(sinx)) a...

Let `f(x) = tan^(-1) ((1+cos x)/(sinx)) and g (x) = tan^(-1) ((sinx)/(1-cos x))`
` int {f(x)+g(x)}dx = `

A

`(pix)/2 - (x^(2))/4 + c`

B

`pix - (x^(2))/2 + c`

C

` (pix)/2 + (x^(2))/4+c`

D

`pix+(x^(2))/2 + c`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • IDENFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Comprehension Type )|6 Videos
  • IDENFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Integar Answer Type)|5 Videos
  • GENERAL SOLUTIONS OF TRIGNOMETRIC EQUATIONS

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type-|2 Videos
  • INCREASING AND DECREASING FUNCTION

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

Integrate : int (x-sinx)/(1-cos x)dx

Evaluate the following integrals : int tan^(-1) ((sinx)/(1- cos x))dx

Knowledge Check

  • Let f(x) = tan^(-1) ((1+cos x)/(sinx)) and g (x) = tan^(-1) ((sinx)/(1-cos x)) int f(x) dx =

    A
    `(pix)/2 - x^(2)/4 + c`
    B
    ` pix - (x^(2))/4 + c`
    C
    ` pi x + (x^(2))/4 + c`
    D
    none of these
  • Let f(x) = int_(-1)^x abs(x+1) dx then

    A
    f(x) is continous in (-1,1)
    B
    f(x) is differentiable in (-1,1)
    C
    f'(x) is continous in (-1,1)
    D
    All of the above
  • If f(x) =cot ^(-1) ((3x -x^(3))/(1-3x^(2))) and g (x) =cos ^(-1) ((1- x ^(2))/(1+x^(2))) then lim _(xtoa) (f(x) -f(a))/(g (x) -g(a)) is equal to-

    A
    `-3/2`
    B
    `3/2`
    C
    `(3)/(2(1+a ^(2)))`
    D
    `-(3)/(2(1+a^(2)))`
  • Similar Questions

    Explore conceptually related problems

    Evaluate int (cos x)/(1 + sinx) dx

    Integrate : int (x+sinx)/(1+cos x)dx

    Let f(x)=2x-sinx and g(x) = 3sqrtx . Then

    Let f(x) = cos 7 x cos 3x and g(x) = sin 7 x sin 3x int {f(x) + g(x) } dx =

    If f (x) = tan ^(-1) ((cos x- sinx)/(cos x+ sin x)) then the value of (d)/(dx) f(x) is-