Home
Class 11
CHEMISTRY
Ionisation energy of He^+ is 19.6 xx 10^...

Ionisation energy of `He^+` is `19.6 xx 10^-18 J "atom"^(-1)`. The energy of the first stationary state `(n = 1)` of `Li^( 2 +)` is.

A

`4.41 xx 10^-16 J "atom"^-1`

B

`- 4.41 xx 10^-17 J "atom"^-1`

C

`- 2.2 xx 10^-15 J "atom"^-1`

D

`8.82 xx 10^17 J "atom"^-1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the energy of the first stationary state (n = 1) of \( \text{Li}^{2+} \), we can use the relationship between the ionization energy of a hydrogen-like atom and its energy levels. Here’s a step-by-step solution: ### Step 1: Understand the relationship between ionization energy and energy levels The energy of the nth stationary state of a hydrogen-like atom is given by the formula: \[ E_n = -\frac{Z^2 \cdot E_H}{n^2} \] where: - \( E_H \) is the ionization energy of hydrogen (approximately \( 2.18 \times 10^{-18} \) J), - \( Z \) is the atomic number of the element, - \( n \) is the principal quantum number. ### Step 2: Identify the given data From the question, we know: - The ionization energy of \( \text{He}^+ \) is \( 19.6 \times 10^{-18} \) J. - For \( \text{Li}^{2+} \), \( Z = 3 \) (since lithium has an atomic number of 3). ### Step 3: Relate the ionization energy of \( \text{He}^+ \) to \( \text{Li}^{2+} \) The ionization energy of a hydrogen-like atom can also be expressed as: \[ E_{ionization} = -E_n \] For \( \text{He}^+ \): \[ E_{ionization}(\text{He}^+) = -E_1(\text{He}^+) = 19.6 \times 10^{-18} \text{ J} \] Thus, we can say: \[ E_1(\text{He}^+) = -19.6 \times 10^{-18} \text{ J} \] ### Step 4: Calculate the energy of \( \text{Li}^{2+} \) Using the proportionality of the energies: \[ \frac{E_{Li^{2+}}}{E_{He^+}} = \frac{Z_{Li^{2+}}^2}{Z_{He^+}^2} \] Where \( Z_{He^+} = 2 \) and \( Z_{Li^{2+}} = 3 \): \[ \frac{E_{Li^{2+}}}{-19.6 \times 10^{-18}} = \frac{3^2}{2^2} = \frac{9}{4} \] ### Step 5: Solve for \( E_{Li^{2+}} \) Rearranging gives: \[ E_{Li^{2+}} = -19.6 \times 10^{-18} \times \frac{9}{4} \] Calculating this: \[ E_{Li^{2+}} = -19.6 \times 10^{-18} \times 2.25 = -44.1 \times 10^{-18} \text{ J} \] ### Step 6: Final result Thus, the energy of the first stationary state (\( n = 1 \)) of \( \text{Li}^{2+} \) is: \[ E_{Li^{2+}} = -4.41 \times 10^{-17} \text{ J} \]

To find the energy of the first stationary state (n = 1) of \( \text{Li}^{2+} \), we can use the relationship between the ionization energy of a hydrogen-like atom and its energy levels. Here’s a step-by-step solution: ### Step 1: Understand the relationship between ionization energy and energy levels The energy of the nth stationary state of a hydrogen-like atom is given by the formula: \[ E_n = -\frac{Z^2 \cdot E_H}{n^2} \] where: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ATOMIC STRUCTURE

    A2Z|Exercise Hydrogen Spectrum|35 Videos
  • ATOMIC STRUCTURE

    A2Z|Exercise Heisenbergs Uncertainity Principle And Debroglie Equation|44 Videos
  • ATOMIC STRUCTURE

    A2Z|Exercise Electromagnetic Wave Theory, Plank Quantum Theory And Photoelectric Effect|25 Videos
  • CHEMICAL BONDING AND MOLECULAR STRUCTURE

    A2Z|Exercise Section D - Chapter End Test|30 Videos

Similar Questions

Explore conceptually related problems

The ionisation energy of He^(o+) is 19.6 xx 10^(-18) J atom^(-1) .The energy of the first stationary state of Li^(2+) will be

The ionisation energy of He^(o+) is 19.6 xx 10^(-19) J "atom "^(-1) .Calculate the energy of the first stationary state of li^(2+)

Knowledge Check

  • Ionisation energy of He^(+) is 19.6xx10^(-18)J"atom"^(-1) . The energy of the first stationary state (n = 1) of Li^(2+) is

    A
    `4.41xx10^(-16)J"atom"^(-1)`
    B
    `-4.41xx10^(-17)J"atom"^(-1)`
    C
    `-2.2xx10^(-15)J"atom"^(-1)`
    D
    `8.82xx10^(-17)J"atom"^(-1)`
  • The ionization energy of He^(+) is 19.6 xx 10^(-18)J" atom"^(-1) . The energy of the first stationary state of Li^(+2) will be:

    A
    `84.2xx10^(-18)`J/atom
    B
    `44.10 xx 10^(-18)`J/atom
    C
    `63.2xx10^(-18)` J/atom
    D
    `21.2xx10^(-18)`J/atom
  • The ionization energy of He^(+) is 19.6 xx 10^(-18)J" atom"^(-1) . The energy of the first stationary state of Li^(+2) will be:

    A
    `84.2xx10^(-18)`J/atom
    B
    `44.10 xx 10^(-18)`J/atom
    C
    `63.2xx10^(-18)` J/atom
    D
    `21.2xx10^(-18)`J/atom
  • Similar Questions

    Explore conceptually related problems

    The ionisation energy of He^(+) " is " 8.72 xx 10^(-18)J " atom"^(-1) . Calculate the energy of the first stationary state of Li^(2+)

    The ionisation energy of He^(+) " is " 19.6 xx 10^(-18)J per atom. Calculate the energy of the first stationary state of Li^(2+)

    The ionization energy of He^(+) is 8.72 xx 10^(-18)J "atom"^(-1) . Calculate the energy of first stationary state of Li^(2+) .

    IE "for" He^+ "is" 1.96 xx 10^-19 J "atom"^-1 . Calculate the energy of first stationary state of Be^(+3) .

    If the ionization energy of He^(+) is 19.6xx10^(-18) J per atom then the energy of Be^(3+) ion in the second stationary state is :