Home
Class 11
CHEMISTRY
Using the Gibbs energy change, Delta G^(...

Using the Gibbs energy change, `Delta G^(@)=+ 63.3 kJ`, for the following reaction,
`Ag_(2)CO_(3)hArr2Ag^(+)(aq)+CO_(3)^(2-)`
the `K_(sp)` of `Ag_(2)CO_(3)(s)` in water at `25^(@)C` is
`(R=8.314 JK^(-1)mol^(-1))`

A

`3.2xx10^(-26)`

B

`8.0xx10^(-12)`

C

`2.9xx10^(-3)`

D

`7.9xx10^(-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the solubility product constant \( K_{sp} \) of \( Ag_2CO_3(s) \) using the Gibbs energy change \( \Delta G^\circ = +63.3 \, \text{kJ} \), we can follow these steps: ### Step 1: Convert \( \Delta G^\circ \) to Joules Since the value of \( \Delta G^\circ \) is given in kilojoules, we need to convert it to joules for consistency with the gas constant \( R \). \[ \Delta G^\circ = 63.3 \, \text{kJ} = 63.3 \times 1000 \, \text{J} = 63300 \, \text{J} \] ### Step 2: Use the Gibbs Free Energy Equation The relationship between Gibbs free energy change and the equilibrium constant is given by the equation: \[ \Delta G^\circ = -RT \ln K_{sp} \] Where: - \( R = 8.314 \, \text{J K}^{-1} \text{mol}^{-1} \) - \( T \) is the temperature in Kelvin (for \( 25^\circ C \), \( T = 298 \, \text{K} \)) ### Step 3: Rearrange the Equation to Solve for \( K_{sp} \) Rearranging the equation to solve for \( K_{sp} \): \[ \ln K_{sp} = -\frac{\Delta G^\circ}{RT} \] ### Step 4: Substitute the Values Now, substitute the values into the equation: \[ \ln K_{sp} = -\frac{63300 \, \text{J}}{(8.314 \, \text{J K}^{-1} \text{mol}^{-1})(298 \, \text{K})} \] Calculating the denominator: \[ RT = 8.314 \times 298 = 2477.572 \, \text{J} \] Now substituting back: \[ \ln K_{sp} = -\frac{63300}{2477.572} \approx -25.53 \] ### Step 5: Calculate \( K_{sp} \) To find \( K_{sp} \), we take the exponential of both sides: \[ K_{sp} = e^{-25.53} \] Calculating \( K_{sp} \): \[ K_{sp} \approx 1.12 \times 10^{-11} \] ### Final Answer Thus, the solubility product constant \( K_{sp} \) of \( Ag_2CO_3(s) \) at \( 25^\circ C \) is approximately: \[ K_{sp} \approx 1.12 \times 10^{-11} \] ---

To find the solubility product constant \( K_{sp} \) of \( Ag_2CO_3(s) \) using the Gibbs energy change \( \Delta G^\circ = +63.3 \, \text{kJ} \), we can follow these steps: ### Step 1: Convert \( \Delta G^\circ \) to Joules Since the value of \( \Delta G^\circ \) is given in kilojoules, we need to convert it to joules for consistency with the gas constant \( R \). \[ \Delta G^\circ = 63.3 \, \text{kJ} = 63.3 \times 1000 \, \text{J} = 63300 \, \text{J} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • IONIC EQUILIBIUM

    A2Z|Exercise Section D - Chapter End Test|30 Videos
  • IONIC EQUILIBIUM

    A2Z|Exercise Section B - Assertion Reasoning|21 Videos
  • HYDROGEN

    A2Z|Exercise Section D - Chapter End Test|30 Videos
  • MOCK TEST

    A2Z|Exercise Mock Test 2|45 Videos

Similar Questions

Explore conceptually related problems

Write the solubility product expression for : (i) BaCO_(3) (s) hArr Ba^(2+) (aq) +CO_(3)^(2-) (aq) , (ii) Ag_(2)CrO_(4) (s) hArr 2Ag^(+) (aq) + CrO_(4)^(2-) (aq)

Using the Gibbs energy change, triangleG^@=+63.3 kJ for the following reactions Ag_(2)CO_(3(g)) Leftrightarrow 2Ag_(aq)^(+) CO_(3(aq))^(2-) the K_(sp) of Ag_(2)CO_(3(s)) in water at 25^@C is

Knowledge Check

  • Using the Gibb's free energy change, DeltaG^(@) =+63.3 kJ for the following reaction Ag_(2)CO_(3)(s)hArr2Ag^(+)(aq)+CO_(3)^(2-)(aq) the K_(sp) of Ag_(2)CO_(3) in water at 25^(@)C is (R=8.314 JK^(-1) "mol"^(-1) )

    A
    `3.2xx20^(-26)`
    B
    `8.0xx10^(-12)`
    C
    `2.9xx10^(-3)`
    D
    `7.9xx10^(-12)`
  • Using the Gibbs energy change, DeltaG^(@) =+63.3 kJ , for the following reaction, Ag_(2)CO_(3)(s) " "2Ag^(+)(aq)+CO_(3)^(2-)(aq) the K_(sp)" of "Ag_(2)CO_(3)(s) in water at 25^(@)C is (R=8.314 J K^(-1)mol^(-1))

    A
    `2.9 xx 10^(-3)`
    B
    `7.9 xx 10^(-2)`
    C
    `3.2 xx 10^(-26)`
    D
    `8.0 xx 10^(-12)`
  • Using the Gibb's energy change , DeltaG^@ =+63.3 kJ , for the following reaction, Ag_2CO_3 (s) hArr 2Ag^(+)(aq) +CO_3^(2-)(aq) the K_(sp) of Ag_2CO_3(s) in water at 25^@C is ("R=8.314 K"^(-1) "mol"^(-1))

    A
    `3.2xx10^(-26)`
    B
    `8.0xx10^(-12)`
    C
    `2.9xx10^(-3)`
    D
    `7.9xx10^(-2)`
  • Similar Questions

    Explore conceptually related problems

    Using the Gibbs energy change DeltaG^@=+63.3kJ , for the following reaction, Ag_2CO_3rarr2Ag+(aq)+CO_3^(2-)(aq) the K_(sp) of Ag_2CO_3(s) in water at 25^@C is (R=8.314 J k ^-1mol^-1){ Given : 10^(0.91)~=8}

    The precipitate of Ag_(2)CO_(3) dissolve in:

    The reaction Ag ^(2+)(aq) + Ag (s) hArr 2 Ag ^(+) (aq) An example of.

    Following reaction is an example of Ag^(2+) (aq) + Ag (s) hArr 2Ag^(+) (aq)

    Consider Delta G^(@) for the following cell reaction : Zn (s) + Ag_(2)O(s)+H_(2)O(l) hArr Zn^(2+)(aq)+2Ag(s)+2OH^(-)(aq) E_(Ag^(+)//Ag)^(@) = +0.80 and E_(Zn^(2+)//Zn)^(@) = - 0.76 V