Home
Class 11
CHEMISTRY
The solubility of BaSO(4) in water is 2....

The solubility of `BaSO_(4)` in water is `2.42xx10^(-3) gL^(-1)` at `298 K`. The value of its solubility product `(K_(sp))` will be (Given molar mass of `BaSO_(4)=233 g mol^(-1)`)

A

`1.08xx10^(-10) mol^(2)L^(-2)`

B

`1.08xx10^(-12) mol^(2)L^(-2)`

C

`1.08xx10^(-14) mol^(2)L^(-2)`

D

`1.08xx10^(-8) mol^(2)L^(-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the solubility product (K_sp) of BaSO₄, we will follow these steps: ### Step 1: Convert the solubility from grams per liter to moles per liter. The solubility of BaSO₄ is given as \(2.42 \times 10^{-3} \, \text{g/L}\). We need to convert this to moles per liter (mol/L). **Calculation:** \[ \text{Moles of BaSO₄} = \frac{\text{mass (g)}}{\text{molar mass (g/mol)}} \] Given: - Mass = \(2.42 \times 10^{-3} \, \text{g}\) - Molar mass of BaSO₄ = 233 g/mol \[ \text{Moles of BaSO₄} = \frac{2.42 \times 10^{-3} \, \text{g}}{233 \, \text{g/mol}} \approx 1.04 \times 10^{-5} \, \text{mol/L} \] ### Step 2: Write the dissociation equation for BaSO₄. When BaSO₄ dissolves in water, it dissociates into barium ions (Ba²⁺) and sulfate ions (SO₄²⁻): \[ \text{BaSO₄ (s)} \rightleftharpoons \text{Ba}^{2+} (aq) + \text{SO}_4^{2-} (aq) \] ### Step 3: Determine the concentrations of the ions at equilibrium. From the dissociation equation, we see that for every mole of BaSO₄ that dissolves, we get: - 1 mole of Ba²⁺ - 1 mole of SO₄²⁻ Thus, the concentration of Ba²⁺ and SO₄²⁻ will both be equal to the solubility of BaSO₄: \[ [\text{Ba}^{2+}] = 1.04 \times 10^{-5} \, \text{mol/L} \] \[ [\text{SO}_4^{2-}] = 1.04 \times 10^{-5} \, \text{mol/L} \] ### Step 4: Write the expression for the solubility product (K_sp). The solubility product \(K_{sp}\) for BaSO₄ is given by the equation: \[ K_{sp} = [\text{Ba}^{2+}][\text{SO}_4^{2-}] \] ### Step 5: Substitute the concentrations into the K_sp expression. Substituting the values we found: \[ K_{sp} = (1.04 \times 10^{-5})(1.04 \times 10^{-5}) = (1.04 \times 10^{-5})^2 \] Calculating this gives: \[ K_{sp} = 1.0816 \times 10^{-10} \] ### Final Answer: \[ K_{sp} \approx 1.08 \times 10^{-10} \] ---

To find the solubility product (K_sp) of BaSO₄, we will follow these steps: ### Step 1: Convert the solubility from grams per liter to moles per liter. The solubility of BaSO₄ is given as \(2.42 \times 10^{-3} \, \text{g/L}\). We need to convert this to moles per liter (mol/L). **Calculation:** \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • IONIC EQUILIBIUM

    A2Z|Exercise Section D - Chapter End Test|30 Videos
  • IONIC EQUILIBIUM

    A2Z|Exercise Section B - Assertion Reasoning|21 Videos
  • HYDROGEN

    A2Z|Exercise Section D - Chapter End Test|30 Videos
  • MOCK TEST

    A2Z|Exercise Mock Test 2|45 Videos

Similar Questions

Explore conceptually related problems

The solubility of BaSO_(4) in water 2.42 xx 10^(3) gL^(-1) at 298 K. The value of solubility product (K_(sp)) will be (Given molar mass of BASO_(4) = 233 g mol^(-1) )

The solubility of Sb_(2)S_(3) in water is 1.0 xx 10^(-5) mol/letre at 298K. What will be its solubility product ?

Knowledge Check

  • The solubility of BaSO_(4) in water is 2.42xx10^(-3)g L^(-1) at 298 K. The value of its solubility product (K_(sp)) will be (Given molar mass of BaSO_(4)=233 g L^(-1) )

    A
    `1.08xx10^(-10) "mol"^(2)L^(-2)`
    B
    `1.08xx10^(-12) "mol"^(2)L^(-2)`
    C
    `1.08xx10^(-14) "mol"^(2)L^(-2)`
    D
    `1.08xx10^(-8) "mol"^(2)L^(-2)`
  • The solubility of BaSO_4 in water is 2.42xx10^(-3) gL^(-3) at 298 K. The value of its solubility product ( k_(sp) ) will be (Given molar mass of BaSO_4= 233 g mol^(-1) )

    A
    `1.08xx10^(-10) mol^2 L^(-2)`
    B
    `1.08xx10^(-12) mol^2 L^(-2)`
    C
    `1.08xx10^(-8) mol^2 L^(-2)`
    D
    `1.08xx10^(-14) mol^2 L^(-2)`
  • The solubility of BaSO_4 in water 2.42 xx 10^(-3)"g L"^(-1) at 298K. The value of its solubility product (K_(sp)) will be (Given molar mass of BaSO_(4)="233 g mol"^(-1))

    A
    `1.08 xx 10^(-10)" mol"^2 L^(-2)`
    B
    `1.08 xx 10^(-12)" mol"^2 L^(-2)`
    C
    `1.08 xx 10^(-14)" mol"^2 L^(-2)`
    D
    `1.08 xx 10^(-8)" mol"^2 L^(-2)`
  • Similar Questions

    Explore conceptually related problems

    The solubility of Sb_(2)S_(3) in water is 1.0 xx 10^(-8) mol/litre at 298 K. What will be its solubility product:

    The solubility of Sb_(2)S_(3) in water is 1.0 xx 10^(-5) mole/litre at 298 K. What will be its solubility product

    The solubility of BaSO_(4) in water is 2.33 xx 10^(-3) gm/litre. Its solubility product will be (molecular weight of BaSO_(4) = 233 )

    The solubility of BaSO_(4) in water is 2.33xx10^(-3) g//litre . Its solubility product will be (molecular weight of BaSO_(4)=233 )

    Solubility of CaF_(2) is 0.5xx10^(-4)" mol L"^(-1) . The value of K_(sp) for the salt is