Home
Class 12
MATHS
In triangle ABC if a^(4) + b^(4) + c^(4)...

In triangle ABC if `a^(4) + b^(4) + c^(4) = 2a^(2)b^(2) + 2b^(2)c^(2)` then the values of B will be-

A

`45^(@)`

B

`135^(@)`

C

`120^(@)`

D

`60^(@)`

Text Solution

Verified by Experts

The correct Answer is:
A, B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLE

    CHHAYA PUBLICATION|Exercise Integer Answer Type-|5 Videos
  • PROPERTIES OF TRIANGLE

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos
  • PROPERTIES OF TRIANGLE

    CHHAYA PUBLICATION|Exercise Long Answer Type Questions|22 Videos
  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Assertion - Reason Type )|2 Videos
  • QUADRATIC EQUATIONS

    CHHAYA PUBLICATION|Exercise Sample Question for Competitive Exams (Assertion- Reason Type)|2 Videos

Similar Questions

Explore conceptually related problems

(i) If in a triangle ABC, a^(4) + b^(4) +c^(4) - 2b^(2) c^(2) -2c^(2)a^(2)=0 , then show that, C=45^(@) or 135^(@) . (ii) In in a triangle ABC, sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B , show that, one of the angles of the triangle is 30^(@) or 150^(@)

If a^(4) + b^(4) + c^(4) + a^(2)b^(2) = 2c^(2)(a^(2) + b^(2)) then show that, C=60^(@) or 120^(@)

Knowledge Check

  • If a, b, c are the sides of the triangle ABC such that a^(4) +b^(4) +c^(4)=2x^(2) (a^(2)+b^(2)), then the angle opposite to the side c is-

    A
    `45^(@) or 135^(@)`
    B
    `30^(@) or 120^(@)`
    C
    `60^(@) or 150^(@)`
    D
    none of these
  • If a^2+b^2+c^2=2(a-b-c)-3 then the value of (2a-3b+4c) will be

    A
    0
    B
    -1
    C
    1
    D
    2
  • In triangle ABC, if a^(2) + b^(2) +c^(2) -bc -ca -ab=0, then the value of sin ^(2)A+ sin ^(2)B+sin ^(2)C is -

    A
    `9/4`
    B
    `4/9`
    C
    `(3sqrt3)/(2)`
    D
    `3/2`
  • Similar Questions

    Explore conceptually related problems

    In triangle ABC, (i) asin(A/2 + B) = (b+c) sin A/2

    If in triangleABC ,a^4+b^4+c^4=2c^2(a^2+b^2) then find angleC

    In the triangle ABC if (2 cos A)/a + ( cos B)/b + (2 cos C)/c = a/(bc) + b/(ca) find the angle A.

    If a/2 = b/3 = c/4 = (2a - 3b + 4c)/p , then find the value of P .

    In triangle ABC, if b^(2) =c^(2) +a^(2) then the value of (tan A+ tan C) is -