Home
Class 12
MATHS
If A=[a(ij)](2xx2)" where "a(ij)=2i+j," ...

If `A=[a_(ij)]_(2xx2)" where "a_(ij)=2i+j," then :"A=`

A

`{:[(3,4),(5,6)]:}`

B

`{:[(3,5),(4,6)]:}`

C

`{:[(3,5),(5,6)]:}`

D

`{:[(3,6),(5,4)]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( A = [a_{ij}]_{2 \times 2} \) where \( a_{ij} = 2i + j \), we will compute each element of the matrix step by step. ### Step 1: Define the matrix structure The matrix \( A \) is a \( 2 \times 2 \) matrix, which means it has 2 rows and 2 columns. We can represent it as: \[ A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \] ### Step 2: Calculate \( a_{11} \) To find \( a_{11} \), we set \( i = 1 \) and \( j = 1 \): \[ a_{11} = 2(1) + 1 = 2 + 1 = 3 \] ### Step 3: Calculate \( a_{12} \) Next, we calculate \( a_{12} \) by setting \( i = 1 \) and \( j = 2 \): \[ a_{12} = 2(1) + 2 = 2 + 2 = 4 \] ### Step 4: Calculate \( a_{21} \) Now, we calculate \( a_{21} \) by setting \( i = 2 \) and \( j = 1 \): \[ a_{21} = 2(2) + 1 = 4 + 1 = 5 \] ### Step 5: Calculate \( a_{22} \) Finally, we calculate \( a_{22} \) by setting \( i = 2 \) and \( j = 2 \): \[ a_{22} = 2(2) + 2 = 4 + 2 = 6 \] ### Step 6: Construct the matrix Now that we have all the elements, we can write the matrix \( A \): \[ A = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} \] ### Final Answer Thus, the matrix \( A \) is: \[ A = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|26 Videos
  • MATHEMATICAL LOGIC

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|78 Videos
  • PAIR OF STRAIGHT LINES

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|19 Videos

Similar Questions

Explore conceptually related problems

If A=|a_(ij)]_(2 xx 2) where a_(ij) = i-j then A =………….

If matrix A=[a_(ij)]_(2X2') where a_(ij)={[1,i!=j0,i=j]}, then A^(2) is equal to

Knowledge Check

  • If A=[a_(ij)]_(2xx2) , where a_(ij)=i+j , then A is equal to

    A
    `[[1,1],[2,2]]`
    B
    `[[1,2],[1,2]]`
    C
    `[[1,2],[3,4]]`
    D
    `[[2,3],[3,4]]`
  • If A = (a_(ij))_(2xx2) where a_(ij) = i+j then A is equal to

    A
    `[(1,1),(2,2)]`
    B
    `[(1,2),(1,2)]`
    C
    `[(1,4),(3,3)]`
    D
    `[(2,3),(3,4)]`
  • If A = (a_(ij))_(3xx3) where a_(ij) = cos (i+j) then

    A
    A is symmetric
    B
    A is skew symmetric
    C
    A is a triangular matrix
    D
    A is a singular matrix
  • Similar Questions

    Explore conceptually related problems

    if A=[a_(ij)]_(2*2) where a_(ij)={i+j,i!=j and a_(ij)=i^(2)-2j,i=j then A^(-1) is equal to

    IfA=[a_(ij)]_(2xx2) such that a_(ij)=i-j+3, then find A.

    Let A=[a_(ij)]_(n xx n) where a_(ij)=i^(2)-j^(2). Then A is: (A) skew symmetric matrix (B) symmetric matrix (C) null matrix (D) unit matrix

    If matrix A=[a_(ij)]_(2xx2^(,)) where a_(ij)=1" if "i!=j =0" if "i=j then A^(2) is equal to :

    If A = [a_(ij)]_(2xx2) , where a_(ij) = ((i + 2j)^(2))/(2 ) , then A is equal to