Home
Class 12
MATHS
If A[(2,0,3),(1,-1,2),(3,-2,0)], then (a...

If `A[(2,0,3),(1,-1,2),(3,-2,0)]`, then `(adj A)A=`

A

`[(-11,0,0),(0,-11,0),(0,0,-11)]`

B

`[(11,0,0),(0,11,0),(0,0,11)]`

C

`[(17,0,0),(0,17,0),(0,0,17)]`

D

`[(-7,0,0),(0,-7,0),(0,0,-7)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product of the adjoint of matrix \( A \) and matrix \( A \) itself. Let's go through the steps one by one. ### Step 1: Define the Matrix \( A \) Given the matrix \( A \): \[ A = \begin{pmatrix} 2 & 0 & 3 \\ 1 & -1 & 2 \\ 3 & -2 & 0 \end{pmatrix} \] ### Step 2: Calculate the Cofactor Matrix \( C \) To find the adjoint of \( A \), we first need to calculate the cofactor matrix \( C \). The cofactor \( C_{ij} \) is calculated as \( (-1)^{i+j} \) times the determinant of the minor matrix obtained by deleting the \( i^{th} \) row and \( j^{th} \) column. 1. **Cofactor \( C_{11} \)**: \[ C_{11} = \begin{vmatrix} -1 & 2 \\ -2 & 0 \end{vmatrix} = (-1)(0) - (2)(-2) = 0 + 4 = 4 \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = -\begin{vmatrix} 1 & 2 \\ 3 & 0 \end{vmatrix} = -[(1)(0) - (2)(3)] = -(-6) = 6 \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = \begin{vmatrix} 1 & -1 \\ 3 & -2 \end{vmatrix} = (1)(-2) - (-1)(3) = -2 + 3 = 1 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = -\begin{vmatrix} 0 & 3 \\ -2 & 0 \end{vmatrix} = -[(0)(0) - (3)(-2)] = -6 \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = \begin{vmatrix} 2 & 3 \\ 3 & 0 \end{vmatrix} = (2)(0) - (3)(3) = -9 \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = -\begin{vmatrix} 2 & 0 \\ 3 & -2 \end{vmatrix} = -[(2)(-2) - (0)(3)] = 4 \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = \begin{vmatrix} 0 & 3 \\ -1 & 2 \end{vmatrix} = (0)(2) - (3)(-1) = 3 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = -\begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = -[(2)(2) - (3)(1)] = -1 \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = \begin{vmatrix} 2 & 0 \\ 1 & -1 \end{vmatrix} = (2)(-1) - (0)(1) = -2 \] Now, the cofactor matrix \( C \) is: \[ C = \begin{pmatrix} 4 & 6 & 1 \\ -6 & -9 & 4 \\ 3 & -1 & -2 \end{pmatrix} \] ### Step 3: Calculate the Adjoint of \( A \) The adjoint of \( A \) is the transpose of the cofactor matrix \( C \): \[ \text{adj} A = C^T = \begin{pmatrix} 4 & -6 & 3 \\ 6 & -9 & -1 \\ 1 & 4 & -2 \end{pmatrix} \] ### Step 4: Calculate \( (\text{adj} A) A \) Now we need to multiply \( \text{adj} A \) with \( A \): \[ (\text{adj} A) A = \begin{pmatrix} 4 & -6 & 3 \\ 6 & -9 & -1 \\ 1 & 4 & -2 \end{pmatrix} \begin{pmatrix} 2 & 0 & 3 \\ 1 & -1 & 2 \\ 3 & -2 & 0 \end{pmatrix} \] Calculating the product: 1. **First row, first column**: \[ 4 \cdot 2 + (-6) \cdot 1 + 3 \cdot 3 = 8 - 6 + 9 = 11 \] 2. **First row, second column**: \[ 4 \cdot 0 + (-6) \cdot (-1) + 3 \cdot (-2) = 0 + 6 - 6 = 0 \] 3. **First row, third column**: \[ 4 \cdot 3 + (-6) \cdot 2 + 3 \cdot 0 = 12 - 12 + 0 = 0 \] 4. **Second row, first column**: \[ 6 \cdot 2 + (-9) \cdot 1 + (-1) \cdot 3 = 12 - 9 - 3 = 0 \] 5. **Second row, second column**: \[ 6 \cdot 0 + (-9) \cdot (-1) + (-1) \cdot (-2) = 0 + 9 + 2 = 11 \] 6. **Second row, third column**: \[ 6 \cdot 3 + (-9) \cdot 2 + (-1) \cdot 0 = 18 - 18 + 0 = 0 \] 7. **Third row, first column**: \[ 1 \cdot 2 + 4 \cdot 1 + (-2) \cdot 3 = 2 + 4 - 6 = 0 \] 8. **Third row, second column**: \[ 1 \cdot 0 + 4 \cdot (-1) + (-2) \cdot (-2) = 0 - 4 + 4 = 0 \] 9. **Third row, third column**: \[ 1 \cdot 3 + 4 \cdot 2 + (-2) \cdot 0 = 3 + 8 + 0 = 11 \] Thus, the product \( (\text{adj} A) A \) is: \[ (\text{adj} A) A = \begin{pmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{pmatrix} \] ### Final Answer \[ (\text{adj} A) A = 11I \quad \text{where } I \text{ is the identity matrix.} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING (Inverse off a matrix )|69 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

If {:A=[(0,1,-1),(2,1,3),(3,2,1)]:} then (A(adj A)A^(-1))A=

If A[(-1,5),(-3,2)] , then adj A=

If A=[(3,2,-1),(4,-1,2),(0,1,2)] then adj (adjA) is

If A =[{:(2,0,0),(0,1,0),(0,0,1):}] then adj(A) =

If A=[(3,4,3),(2,5,7),(1,2,3)] then |Adj(Adj A)|=

If A = [(1,1,1),(1,2,-3),(2,-1,3)] then | adj A| =