Home
Class 12
MATHS
A=[(2,-2),(-2,2)], B=[(1,1),(1,1)] then...

`A=[(2,-2),(-2,2)], B=[(1,1),(1,1)]` then

A

`A^(-1)=B`

B

`B^(-1)` does not exist

C

`A^(-1)` does not exist

D

Both (B) and (C)

Text Solution

Verified by Experts

The correct Answer is:
d
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise EVALUATION TEST|13 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise CRITICAL THINKING (2.3 Application of matrices)|5 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

If A=[(2,2),(-3,2)] and B=[(0,-1),(1,0)] then (B^-1A^-1)^-1= (A) [(2,-2),(2,3)] (B) [(3,-2),(2,3)] (C) 1/10 [ (2,2),(-2,3)] (D) 1/10 [(3,-2),(-2,2)]

A=[(1,2),(2,1)], then adjoint of A is equal to (A) [(1,-2),(-2,1)] (B) [(2,1),(2,1)] (C) [(1,-2),(-2,1)] (D) [(-1,2),(2,-1)]

Knowledge Check

  • If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equal to

    A
    `[(2,-2),(2,3)]`
    B
    `[(2,2),(-2,3)]`
    C
    `[(2,-3),(2,2)]`
    D
    `[(1,-1),(-2,3)]`
  • If A=[(1,-1),(2,1)], B=[(a,1),(b,-1)] and (A+B)^(2)=A^(2)+B^(2)+2AB , then

    A
    `a=-1`
    B
    `a=1`
    C
    `b=2`
    D
    `b=-2`
  • If A = [(1,-1),(2,-1)] , B = [(a,1),(b,-1)] and (A + B)^(2) = A^(2) + B^(2) , then the value of a + b is

    A
    4
    B
    5
    C
    6
    D
    2
  • Similar Questions

    Explore conceptually related problems

    If A'=[(3,4),(-1,2),(0,1)] and B=[(-1,2,1),(1,2,3)] , then verify that (A+B)'=A'+B'

    If A=[(2,1),(1,0)],B=[(1,-1),(2,3)] , verify that : (A+B)^(2)!=A^(2)+2AB+B^(2)

    If A={:[(a,b),(2,-1)]:},B={:[(1,1),(4,-1)]and(A+B)^(2)=A^(2)+B^(2) , then (b,a) = ______ .

    If A=[(1,-1),(2,-1)] and B=[(1,a),(4,b)] and (A+B)^(2)=A^(2)+B^(2) . Then a and b are respectively

    If A=[(1,-2,1),(2,1,3)] and B=[(2,1),(3,2),(1,1)] then (AB)' is equal to