Home
Class 12
MATHS
If inttanx/(1+tanx+tan^(2)x)dx =x-2/sq...

If `inttanx/(1+tanx+tan^(2)x)dx`
`=x-2/sqrt(A)tan^(-1)((2tanx+1)/sqrt(A))+c`, then A=

A

2

B

3

C

4

D

5

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

inte^(x)(1+tanx+tan^(2)x)dx=

int(2tanx)/(2+3tan^(2)x)dx=

int(tan x)/(tan^(2)x+tan x+1)dx=x-(k)/(sqrt(A))tan^(-1)((k tan x+1)/(sqrt(A)))+C, then the ordered pir of (K,A) is equal to : (A) (2,1)(B)(-2,3)(C)(2,3)(D)(-2,1)

int((1+tan)/(1-tanx))^(2)dx=

inttan^(-1)((2tanx)/(1-tan^(2)x))dx=

int(1)/(1+cos^(2)x)dx=(1)/(sqrt(2))tan^(-1)((tan x)/(sqrt(2)))+c

int(1+tan^(2)x)/(1+tanx)dx=

int(dx)/(sin^(2)x+tan^(2)x)=(-1)/(l)cot x-(1)/(k sqrt(2))Tan^(-1)((tan x)/(sqrt(2)))+c then (k)^l=

int sin^(-1)((2tanx )/(1+tan^(2)x))dx = ?

int(dx)/(sin^(2)x+Tan^(2)x)=(-1)/(l)cot x-(1)/(k sqrt(2))Tan^(-1)((tan x)/(sqrt(2)))+c then (k)^l=