The line (x-3)/1=(y-4)/2=(z-5)/2 cuts the plane x+y+z=17 at
Statement 1: A point on the line (x+2)/3=(y+1)/2=(z-3)/2 at a distance 3sqrt(2) from the point (1,2,3) lies on the lne (x+7)/5=(y+t)/4=(z-2)/1 Statement 2: If d is the distance between the point (-1,-5,-10) and the point of intersectionof the line (x-2)/3=(y+1)/4=(z-2)/12 with the plane x-y+z=5 then d=13
Find the coordinates of the point where the line (x-2)/(3)=(y+1)/(4)=(z-2)/(2) intersect the plane x-y+z-5=0. Also,find the angel between the line and the plane.
Find the coordinates of the point,where the line (x-2)/(3)=(y+1)/(4)=(z-2)/(2) intersects the plane x-y+z-5=0 .Also find the angle between the line and the plane.
The distance of the point (-1, -5, -10) from the point of intersection of the line (x-2)/(2)=(y+1)/(4)=(z-2)/(12) and the plane x-y+z=5 is
(i) Find the angle between the line : (x + 1)/(2) = (y)/(3) = (z - 3)/(6) and the plane 10x + 12y - 11z = 3 (ii) Find the angle between the line : (x + 1)/(2) = (y -1)/(2) = (z -2)/(4) and the plane 2x + y - 3z + 4 =0 . (iii) Find the angle between the plane 2x + 4y - z = 8 and line (x - 1)/(2) = (2 - y)/(7) = (3z + 6)/(12) (iv) Find the angle between the line (x - 1)/(3) = (3 -y)/(-1) = (3z + 1)/(6) and the plane 3x - 5y + 2z = 10 .
Find the distance of the point (-1,-5,-10) from the point of intersection of the line (x-2)/(3)=(y+1)/(4)=(z-2)/(12) and plane x-y+z=5 .