Home
Class 12
MATHS
(d)/(dx)((logx)/(x^(2)))=...

`(d)/(dx)((logx)/(x^(2)))=`

A

`x^(-2)(1+2logx)`

B

`x^(-2)(2logx-1)`

C

`x^(-3)(1-2logx)`

D

`x^(-4)(1-2logx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \(\frac{\log x}{x^2}\), we will use the quotient rule of differentiation. The quotient rule states that if you have a function \(\frac{u}{v}\), then its derivative is given by: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] In our case, let: - \(u = \log x\) - \(v = x^2\) Now, we will find the derivatives of \(u\) and \(v\): 1. **Find \( \frac{du}{dx} \)**: \[ \frac{du}{dx} = \frac{d}{dx}(\log x) = \frac{1}{x} \] 2. **Find \( \frac{dv}{dx} \)**: \[ \frac{dv}{dx} = \frac{d}{dx}(x^2) = 2x \] Now, we can apply the quotient rule: 3. **Apply the quotient rule**: \[ \frac{d}{dx}\left(\frac{\log x}{x^2}\right) = \frac{x^2 \cdot \frac{1}{x} - \log x \cdot 2x}{(x^2)^2} \] 4. **Simplify the numerator**: \[ = \frac{x^2 \cdot \frac{1}{x} - 2x \log x}{x^4} \] \[ = \frac{x - 2x \log x}{x^4} \] 5. **Factor out \(x\) from the numerator**: \[ = \frac{x(1 - 2\log x)}{x^4} \] 6. **Simplify the expression**: \[ = \frac{1 - 2\log x}{x^3} \] Thus, the final answer is: \[ \frac{1 - 2\log x}{x^3} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)(sqrt((x^(2)+3)))

(d)/(dx)((x^(2))/(x-1))=

(d)/(dx){(x^(2)-x+1)/(x^(2)+x+1)}=

Solve the differential equation (dy)/(dx)=(x(2logx+1))/((siny+ycosy)) .

(d)/(dx)=(-2x^(2)) =

(d)/(dx)(3x^(2)+2x)=

(d)/(dx)(logx)^(4) is equal to

d/(dx) [log(logx)] =

STATEMENT-1 : intx^(x)(1+logx)dx=x^(x)+C and STATEMENT-2 : (d)/(dx)x^(x)=x^(x)(1+logx)

d/(dx)(x^(2) + cosx)^(4) =