Home
Class 12
MATHS
(d)/(dx)(3^(3^x))=...

`(d)/(dx)(3^(3^x))=`

A

`2*3^(x)*3^(3^x)*llog3`

B

`3^(x)*(log3)^(2)`

C

`3^(3^x)*(log3)^(2)`

D

`3^(3^x)*3^(x)*(log3)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = 3^{3^x} \), we will use logarithmic differentiation. Here’s a step-by-step solution: ### Step 1: Take the natural logarithm of both sides We start with the equation: \[ y = 3^{3^x} \] Taking the natural logarithm of both sides gives: \[ \ln y = \ln(3^{3^x}) \] ### Step 2: Apply the logarithmic identity Using the property of logarithms that states \( \ln(a^b) = b \ln a \), we can simplify the right-hand side: \[ \ln y = 3^x \ln 3 \] ### Step 3: Differentiate both sides with respect to \( x \) Now we differentiate both sides. Remember that we need to use implicit differentiation on the left side: \[ \frac{d}{dx}(\ln y) = \frac{d}{dx}(3^x \ln 3) \] Using the chain rule on the left side: \[ \frac{1}{y} \frac{dy}{dx} = \ln 3 \cdot \frac{d}{dx}(3^x) \] ### Step 4: Differentiate \( 3^x \) Using the formula for the derivative of an exponential function, \( \frac{d}{dx}(a^x) = a^x \ln a \), we get: \[ \frac{d}{dx}(3^x) = 3^x \ln 3 \] So substituting this back into our equation gives: \[ \frac{1}{y} \frac{dy}{dx} = \ln 3 \cdot (3^x \ln 3) \] ### Step 5: Solve for \( \frac{dy}{dx} \) Now we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = y \cdot (3^x \ln^2 3) \] Substituting back \( y = 3^{3^x} \): \[ \frac{dy}{dx} = 3^{3^x} \cdot (3^x \ln^2 3) \] ### Final Answer Thus, the derivative is: \[ \frac{dy}{dx} = 3^{3^x} \cdot 3^x \ln^2 3 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)(3^x)(e^x)

Evaluate: (d)/(dx)(3x^(2))

Knowledge Check

  • If (d)/(dx)[f(x)]=(1)/(1+x^(2))," then: "(d)/(dx)[f(x^(3))]=

    A
    `(3x)/(1+x^(3))`
    B
    `(3x^(2))/(1+x^(6))`
    C
    `(-6x^(5))/((1+x^(6))^(2))`
    D
    `(-6x^(5))/(1+x^(6))`
  • d/(dx)(x^(4x^(3))) =

    A
    `x^(12x^(2))`
    B
    `4x^(4x^(3)+2).(1+3 log x)`
    C
    `4x^(3). Log x`
    D
    `4x^(3)(1+ 3 log x)`
  • Similar Questions

    Explore conceptually related problems

    (d)/(dx)(3x^(2)+2x)=

    (d)/(dx)((3^(x)-3^(-x))/(3^(x)+3^(-x)))

    (d)/(dx)(x^((1)/(3)))=

    d/(dx) (3x-5)^2

    Find the order and degree of the differential equation. (d^(3)y)/(dx^(3))=sqrt(x+((dy)/(dx))^(3))

    Evaluate: (d)/(dx)((1)/(x^(3)))