Home
Class 12
MATHS
If y=sqrt(x+sqrt(x+sqrt(x.." to "oo))),"...

If `y=sqrt(x+sqrt(x+sqrt(x.." to "oo)))," then "(dy)/(dx)=`

A

`(1)/(2y-1)`

B

`(1)/(2y)`

C

`(-1)/(2y+1)`

D

`(1)/(2y+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( y = \sqrt{x + \sqrt{x + \sqrt{x + \ldots}}} \), we can follow these steps: ### Step 1: Set up the equation Since the expression under the square root continues infinitely, we can express it as: \[ y = \sqrt{x + y} \] ### Step 2: Square both sides To eliminate the square root, we square both sides of the equation: \[ y^2 = x + y \] ### Step 3: Rearrange the equation Next, we rearrange the equation to isolate terms: \[ y^2 - y - x = 0 \] ### Step 4: Differentiate both sides Now, we differentiate both sides with respect to \( x \). Using implicit differentiation: \[ \frac{d}{dx}(y^2) - \frac{d}{dx}(y) - \frac{d}{dx}(x) = 0 \] This gives us: \[ 2y \frac{dy}{dx} - \frac{dy}{dx} - 1 = 0 \] ### Step 5: Factor out \( \frac{dy}{dx} \) We can factor out \( \frac{dy}{dx} \): \[ (2y - 1) \frac{dy}{dx} = 1 \] ### Step 6: Solve for \( \frac{dy}{dx} \) Now, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{2y - 1} \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{1}{2y - 1} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

If y=sqrt(x+sqrt(x+sqrt(x+...to oo)),) prove that (dy)/(dx)=(1)/(2y-1)

Knowledge Check

  • If y=sqrt(tanx+sqrt(tanx+sqrt(tan+..." to "oo)))," then "(dy)/(dx)=

    A
    `(sec^(2)x)/(2yx)`
    B
    `(csc^(2)x)/(2y-1)`
    C
    `(sec^(2)x)/(2y+1)`
    D
    `(csc^(2)x)/(2y+1)`
  • If y= sqrt (x+ sqrt (x+ sqrt (x))),then (dy)/(dx) =

    A
    ` (1)/(sqrt(x+sqrtx+ sqrtx) )(1+ (1)/(sqrt( x+sqrt(x) ))( 1+(1)/(sqrt(x))))`
    B
    ` (1)/(2sqrt(x+sqrtx+ sqrtx) )(1+ (1)/(sqrt( x+sqrt(x) ))( 1+(1)/(sqrt(x))))`
    C
    ` (1)/(2sqrt(x+sqrtx+ sqrtx) )(1+ (1)/(2sqrt( x+sqrt(x) ))( 1+(1)/(sqrt(x))))`
    D
    ` (1)/(2sqrt(x+sqrtx+ sqrtx) )(1+ (1)/(2sqrt( x+sqrt(x) ))( 1+(1)/(2sqrt(x))))`
  • If y=sqrt((sqrt(x-1))/(sqrt(x+1)))," then "(dy)/(dx)|_(x=4)=

    A
    `(sqrt(3))/(2)`
    B
    `(2)/(sqrt(3))`
    C
    `(sqrt(36))/(3)`
    D
    `(sqrt(3))/(36)`
  • Similar Questions

    Explore conceptually related problems

    Let y=sqrt(x+sqrt(x+sqrt(x+...oo)))," then "(dy)/(dx) is equal to

    If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo)))) , then (dy)/(dx) is equal to

    y=sqrt(tanx+sqrt(tanx+sqrt(tanx)+...oo)) then (dy)/(dx)=

    " If "y=sqrt(logx+sqrt(logx+sqrt(logx+...oo)))," then "(dy)/(dx) is

    sqrt(y-sqrt(y-sqrt(y-......till oo)))=sqrt(x+sqrt(x+sqrt(x+......til_(oo)))) then (dy)/(dx)=