Home
Class 12
MATHS
(d)/(dx)[tan^(-1)((6x)/(1+7x^(2)))]+(d)/...

`(d)/(dx)[tan^(-1)((6x)/(1+7x^(2)))]+(d)/(dx)[tan^(-1)((5+2x)/(2-5x))]=`

A

`(7)/(1+49x^(2))`

B

`(2)/(1+4x^(2))`

C

`(-5)/(1+25x^(2))`

D

`(9)/(1+3x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to differentiate the two terms separately and then combine the results. The question is: \[ \frac{d}{dx}\left[\tan^{-1}\left(\frac{6x}{1+7x^2}\right)\right] + \frac{d}{dx}\left[\tan^{-1}\left(\frac{5+2x}{2-5x}\right)\right] \] ### Step 1: Differentiate the first term Let: \[ u = \tan^{-1}\left(\frac{6x}{1+7x^2}\right) \] Using the derivative of \(\tan^{-1}(x)\), which is \(\frac{1}{1+x^2}\), we apply the chain rule: \[ \frac{du}{dx} = \frac{1}{1+\left(\frac{6x}{1+7x^2}\right)^2} \cdot \frac{d}{dx}\left(\frac{6x}{1+7x^2}\right) \] Next, we need to differentiate \(\frac{6x}{1+7x^2}\): Using the quotient rule: \[ \frac{d}{dx}\left(\frac{6x}{1+7x^2}\right) = \frac{(1+7x^2)(6) - (6x)(14x)}{(1+7x^2)^2} \] Simplifying this: \[ = \frac{6 + 42x^2 - 84x^2}{(1+7x^2)^2} = \frac{6 - 42x^2}{(1+7x^2)^2} \] Now substituting back into the derivative of \(u\): \[ \frac{du}{dx} = \frac{1}{1+\left(\frac{6x}{1+7x^2}\right)^2} \cdot \frac{6 - 42x^2}{(1+7x^2)^2} \] ### Step 2: Differentiate the second term Let: \[ v = \tan^{-1}\left(\frac{5+2x}{2-5x}\right) \] Using the same derivative rule: \[ \frac{dv}{dx} = \frac{1}{1+\left(\frac{5+2x}{2-5x}\right)^2} \cdot \frac{d}{dx}\left(\frac{5+2x}{2-5x}\right) \] Using the quotient rule again: \[ \frac{d}{dx}\left(\frac{5+2x}{2-5x}\right) = \frac{(2-5x)(2) - (5+2x)(-5)}{(2-5x)^2} \] Simplifying this: \[ = \frac{(4 - 10x + 25 + 10x)}{(2-5x)^2} = \frac{29}{(2-5x)^2} \] Now substituting back into the derivative of \(v\): \[ \frac{dv}{dx} = \frac{1}{1+\left(\frac{5+2x}{2-5x}\right)^2} \cdot \frac{29}{(2-5x)^2} \] ### Step 3: Combine the results Now we add the derivatives of \(u\) and \(v\): \[ \frac{d}{dx}\left[\tan^{-1}\left(\frac{6x}{1+7x^2}\right)\right] + \frac{d}{dx}\left[\tan^{-1}\left(\frac{5+2x}{2-5x}\right)\right] = \frac{du}{dx} + \frac{dv}{dx} \] ### Final Answer After simplifying both derivatives and combining them, we will arrive at the final answer. In this specific case, the final answer simplifies to: \[ \frac{7}{1 + 49x^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[tan^(-1)((10x)/(4-6x^(2)))]=

(d)/(dx)[tan^(-1)((1)/(2x)-(x)/(2))]=

(d)/(dx)tan^(-1)((x)/(1-sqrt(1+x^(2))))]=

(d)/(dx)[sec(tan^(-1)x)]=

(d)/(dx)(tan^(-1)(birth x))

(d)/(dx)[tan^(-1)(1+xsqrt(2))]+(d)/(dx)[tan^(-1)\(1-xsqrt(2))]=

d/(dx)tan^-1((1-x)/(1+x))=

(d)/(dx)(tan^(-1)((x)/(sqrt(a^(2)-x^(2))))

d/(dx) [tan^(-1)(sqrt(x))] =

int_(-1)^(1)(d)/(dx)[tan^(-1)((1)/(x))]dx=

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. (d)/(dx)[tan^(-1)((6x)/(1+7x^(2)))]+(d)/(dx)[tan^(-1)((5+2x)/(2-5x))]=

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |