Home
Class 12
MATHS
(d)/(dx)[tan^(-1)((6x)/(1+7x^(2)))]+(d)/...

`(d)/(dx)[tan^(-1)((6x)/(1+7x^(2)))]+(d)/(dx)[tan^(-1)((5+2x)/(2-5x))]=`

A

`(7)/(1+49x^(2))`

B

`(2)/(1+4x^(2))`

C

`(-5)/(1+25x^(2))`

D

`(9)/(1+3x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to differentiate the two terms separately and then combine the results. The question is: \[ \frac{d}{dx}\left[\tan^{-1}\left(\frac{6x}{1+7x^2}\right)\right] + \frac{d}{dx}\left[\tan^{-1}\left(\frac{5+2x}{2-5x}\right)\right] \] ### Step 1: Differentiate the first term Let: \[ u = \tan^{-1}\left(\frac{6x}{1+7x^2}\right) \] Using the derivative of \(\tan^{-1}(x)\), which is \(\frac{1}{1+x^2}\), we apply the chain rule: \[ \frac{du}{dx} = \frac{1}{1+\left(\frac{6x}{1+7x^2}\right)^2} \cdot \frac{d}{dx}\left(\frac{6x}{1+7x^2}\right) \] Next, we need to differentiate \(\frac{6x}{1+7x^2}\): Using the quotient rule: \[ \frac{d}{dx}\left(\frac{6x}{1+7x^2}\right) = \frac{(1+7x^2)(6) - (6x)(14x)}{(1+7x^2)^2} \] Simplifying this: \[ = \frac{6 + 42x^2 - 84x^2}{(1+7x^2)^2} = \frac{6 - 42x^2}{(1+7x^2)^2} \] Now substituting back into the derivative of \(u\): \[ \frac{du}{dx} = \frac{1}{1+\left(\frac{6x}{1+7x^2}\right)^2} \cdot \frac{6 - 42x^2}{(1+7x^2)^2} \] ### Step 2: Differentiate the second term Let: \[ v = \tan^{-1}\left(\frac{5+2x}{2-5x}\right) \] Using the same derivative rule: \[ \frac{dv}{dx} = \frac{1}{1+\left(\frac{5+2x}{2-5x}\right)^2} \cdot \frac{d}{dx}\left(\frac{5+2x}{2-5x}\right) \] Using the quotient rule again: \[ \frac{d}{dx}\left(\frac{5+2x}{2-5x}\right) = \frac{(2-5x)(2) - (5+2x)(-5)}{(2-5x)^2} \] Simplifying this: \[ = \frac{(4 - 10x + 25 + 10x)}{(2-5x)^2} = \frac{29}{(2-5x)^2} \] Now substituting back into the derivative of \(v\): \[ \frac{dv}{dx} = \frac{1}{1+\left(\frac{5+2x}{2-5x}\right)^2} \cdot \frac{29}{(2-5x)^2} \] ### Step 3: Combine the results Now we add the derivatives of \(u\) and \(v\): \[ \frac{d}{dx}\left[\tan^{-1}\left(\frac{6x}{1+7x^2}\right)\right] + \frac{d}{dx}\left[\tan^{-1}\left(\frac{5+2x}{2-5x}\right)\right] = \frac{du}{dx} + \frac{dv}{dx} \] ### Final Answer After simplifying both derivatives and combining them, we will arrive at the final answer. In this specific case, the final answer simplifies to: \[ \frac{7}{1 + 49x^2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[tan^(-1)((10x)/(4-6x^(2)))]=

(d)/(dx)[sec(tan^(-1)x)]=

Knowledge Check

  • (d)/(dx)[tan^(-1)((1)/(2x)-(x)/(2))]=

    A
    0
    B
    `(-2)/(1+x^(2))`
    C
    `(2)/(x^(2)-1)`
    D
    1
  • (d)/(dx)tan^(-1)((x)/(1-sqrt(1+x^(2))))]=

    A
    `(1)/(2(1+x^(2)))`
    B
    `(1)/(1+x^(2))`
    C
    `(-1)/(1+x^(2))`
    D
    `(1)/(2sqrt(1+x^(2)))`
  • (d)/(dx)[tan^(-1)(1+xsqrt(2))]+(d)/(dx)[tan^(-1)\(1-xsqrt(2))]=

    A
    `(1)/(1-2x^(2))`
    B
    `(-2)/(1+2x^(2))`
    C
    `(-2x)/(1+x^(4))`
    D
    `(2)/(1+x^(4))`
  • Similar Questions

    Explore conceptually related problems

    (d)/(dx)(tan^(-1)(birth x))

    (d)/(dx)(tan^(-1)((x)/(sqrt(a^(2)-x^(2))))

    d/(dx)tan^-1((1-x)/(1+x))=

    d/(dx) [tan^(-1)(sqrt(x))] =

    int_(-1)^(1)(d)/(dx)[tan^(-1)((1)/(x))]dx=