Home
Class 12
MATHS
If logy=tan^(-1)x,"then "(1+x^(2))y(2)+(...

If `logy=tan^(-1)x,"then "(1+x^(2))y_(2)+(2x-1)y_(1)+4=`

A

0

B

`2logy`

C

4

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \log y = \tan^{-1} x \] ### Step 1: Differentiate both sides We will differentiate both sides with respect to \( x \). Using the chain rule on the left side, we have: \[ \frac{d}{dx}(\log y) = \frac{1}{y} \frac{dy}{dx} \] For the right side, the derivative of \( \tan^{-1} x \) is: \[ \frac{d}{dx}(\tan^{-1} x) = \frac{1}{1 + x^2} \] So, we can equate the derivatives: \[ \frac{1}{y} \frac{dy}{dx} = \frac{1}{1 + x^2} \] ### Step 2: Rearranging the equation Multiplying both sides by \( y(1 + x^2) \): \[ (1 + x^2) \frac{dy}{dx} = y \] ### Step 3: Differentiate again Now, we will differentiate both sides again. We apply the product rule on the left side: \[ \frac{d}{dx}((1 + x^2) \frac{dy}{dx}) = (1 + x^2) \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} \] The right side is simply \( \frac{dy}{dx} \): \[ \frac{dy}{dx} \] So we have: \[ (1 + x^2) \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} = \frac{dy}{dx} \] ### Step 4: Rearranging the equation Rearranging gives us: \[ (1 + x^2) \frac{d^2y}{dx^2} + (2x - 1) \frac{dy}{dx} = 0 \] ### Step 5: Substitute into the original expression Now, we need to find the expression: \[ (1 + x^2) y_2 + (2x - 1) y_1 + 4 \] Where \( y_2 = \frac{d^2y}{dx^2} \) and \( y_1 = \frac{dy}{dx} \). From our previous step, we have: \[ (1 + x^2) y_2 + (2x - 1) y_1 = 0 \] Thus, we can substitute this into our expression: \[ (1 + x^2) y_2 + (2x - 1) y_1 + 4 = 0 + 4 = 4 \] ### Final Answer Therefore, the final result is: \[ (1 + x^2) y_2 + (2x - 1) y_1 + 4 = 4 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If log y=tan^(-1)x, show that (1+x^(2))y_(2)+(2x-1)y_(1)=0

If y=e^(tan^(-1)x), prove that (1+x^(2))y_(2)+(2x-1)y_(1)=0

Knowledge Check

  • If y=tan^(-1)((2)/(e^(-x)-e^(x)))" then "(1+e^(2x))y_(1)=

    A
    `2e^(2x)`
    B
    `3e^(2x)`
    C
    `4e^(2x)`
    D
    `5e^(2x)`
  • If (x_(1) , y_(1)) " and " (x_(2), y_(2)) are ends of a focal chord of parabola 3y^(2) = 4x , " then " x_(1) x_(2) + y_(1) y_(2) =

    A
    `12`
    B
    `-12`
    C
    `1/3`
    D
    `-(1)/(3)`
  • Similar Questions

    Explore conceptually related problems

    If y=tan^(-1)x, then (1+x^(2))y_(2)+2xy_(1)= (a) y(b)0(c)1(d)2

    If y=e^(tan^^)((-1)x), prove that (1+x^(2))y_(2)+(2x-1)y_(1)=0

    If y=(tan^(-1)x)^(2), then prove that (1+x^(2))^(2)y_(2)+2x(1+x^(2))y_(1)=2

    If y=e^(tan x), then (cos^(2)x)y_(2)=(1-sin2x)y_(1)(b)-(1+sin2x)y_(1)(c)(1+sin2x)y_(1)(d) none of these

    If y=(tan^(-1)x)^2 , show that (x^2+1)^2y_2+2x(x^2+1)y_1=2 .

    y = e ^ (xx) x tan ^ (- 1) x, showthat (1 + x ^ (2)) y_ (2) -2 (1-x + x ^ (2)) y_ (1) + (1 -x ^ (2)) y = 0