Home
Class 11
PHYSICS
If vec(A) is 2hat(i)+9hat(j)+4hat(k), th...

If `vec(A)` is `2hat(i)+9hat(j)+4hat(k)`, then `4vec(A)` will be `:`

A

`8hat(i)+16hat(j)+36hat(k)`

B

`8hat(i)+36hat(k)+16hat(j)`

C

`8hat(i)+9hat(j)+16hat(k)`

D

`8hat(i)+36hat(j)+16hat(k)`

Text Solution

Verified by Experts

The correct Answer is:
D

`vec(A)=2hat(i)+9hat(j)+4hat(k)`
`4vec(A)=8hat(i)+36hat(j)+16hat(k)`
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise DPP no 9 physics|10 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise Dpp no 10 physics|8 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise DPP NO 7 PHYSICS|4 Videos
  • CURRENT ELECTRICITY

    RESONANCE|Exercise Exercise|54 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

If angle bisector of vec(a) = 2hat(i) + 3hat(j) + 4hat(k) and vec(b) = 4hat(i) - 2hat(j) + 3 hat(k) is vec(c) = alpha hat(i) + 2hat(j) + beta hat(k) then :

If vec(A) = 3hat(i) - 4hat(j) + hat(k) and vec(B) = 4hat(j) + phat(i) + hat(k) for what value of p, vec(A) and vec(B) will ve collinear ?

Let vec(A)=2hat(i)-3hat(j)+4hat(k) and vec(B)=4hat(i)+hat(j)+2hat(k) then |vec(A)xx vec(B)| is equal to

The position vectors of points A, B, C and D are : vec(A) = 3hat(i) + 4hat(j) + 5hat(k), vec(B) = 4hat(i) + 5hat(j) + 6hat(k) vec(C ) = 7hat(i) + 9hat(j) + 3hat(k) and vec(D) = 4hat(i) + 6hat(j) Then the displacement vectors vec(AB) and vec(CD) are :

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k)) then |vec(a)xx vec(b)|=?

verify that vec(a) xx (vec(b)+ vec(c))=(vec(a) xx vec(b))+(vec(a) xx vec(c)) , "when" (i) vec(a)= hat(i)- hat(j)-3 hat(k), vec(b)= 4 hat(i)-3 hat(j) + hat(k) and vec(c)= 2 hat(i) - hat(j) + 2 hat(k) (ii) vec(a)= 4 hat(i)-hat(j)+hat(k), vec(b)= hat(i)+hat(j)+ hat(k) and vec(c)= hat(i)- hat(j)+hat(k).

The position vectors of points A, B , C and D are vec(A) = 3hat(i) + 4hat(j) + 5hat(k), vec(B) = 4hat(i)+5hat(j) + 6hat(k), vec(C )= 7hat(i) + 9hat(j) + 3hat(k) and vec(D) = 4hat(i) + 6hat(j) then the displacement vectors bar(AB) and bar(CD) are :

If vec(A)=-2hat(i)+3hat(j)-4hat(k)and vec(B)=3hat(i)-4hat(j)+5hat(k) then vec(A)xxvec(B) is

If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .