Home
Class 11
PHYSICS
Given : vec(A)rarr=2hat(i)-3hat(j) is ...

Given `: vec(A)rarr=2hat(i)-3hat(j)` is
The magnitude of `(vec(A)+vec(B))` is `:`

A

`sqrt(120)units`

B

`sqrt(130)units`

C

`sqrt(58)units`

D

`sqrt(65)units`

Text Solution

Verified by Experts

The correct Answer is:
B

`(vec(A)+vec(B))=7hat(i)-9hat(j)`
`:. |vec(A)+vec(B)|=sqrt(49+81)=sqrt(130)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise Dpp no 10 physics|8 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise Dpp no 11 physics|6 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise DPP 8 PHYSICS|7 Videos
  • CURRENT ELECTRICITY

    RESONANCE|Exercise Exercise|54 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

If vec(A)=4hat(i)-3hat(j) and vec(B)=6hat(i)+8hat(j) ,then find the magnitude and direction of vec(A)+vec(B) .

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

Knowledge Check

  • vec(A) and vec(B) are two vectors given by vec(A)=2hat(i)+3hat(j) and vec(B)=hat(i)+hat(j). The magnitude of the component of vec(A) along vec(B) is

    A
    `(5)/(sqrt2)`
    B
    `(3)/(sqrt2)`
    C
    `(7)/(sqrt2)`
    D
    `(1)/(sqrt2)`
  • Which of the following is not true ? If vec(A) = 3hat(i) + 4hat(j) and vec(B) = 6hat(i) + 8hat(j) where A and B are the magnitude of vec(A) and vec(B) ?

    A
    `vec(A) xx vec(B) = 0`
    B
    `(|vec(A)|)/(|vec(B)|) = (1)/(2)`
    C
    `vec(A).vec(B) = 48`
    D
    `A = 5`
  • If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k) , find the magnitude of compinent of (vec(A)+vec(B)) along vec(B)

    A
    `4` unit
    B
    `5` unit
    C
    `6` unit
    D
    `7` unit
  • Similar Questions

    Explore conceptually related problems

    Let vec(a) = hat(i) + 2hat(j) + 3hat(k) , vec(b) = 2hat(i) + hat(j) + hat(k), vec(c) = 3hat(i) + 2hat(j) + hat(k) and vec(d) = 3hat(i) - hat(j) - 2hat(k) , then . Find the value of (vec(a) xx vec(b)) xx (vec(a) xx vec(b)).vec(d)

    If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

    If vec(A) = 3 hat(i) - 4 hat(j) and vec(B) = 2 hat(i) + 16 hat(j) then the magnitude and direction of vec(A) + vec(B) will be

    If vec(a)=4hat(i)+hat(j)-hat(k) , vec(b)=3hat(i)-2hat(j)+2hat(k) , then the value of |vec(a)-vec(b)-vec(c)| is :-

    If vec(a) = 2hat(i) + hat(j) + 2hat(k), vec(b) = 5hat(i) - 3hat(j) + hat(k) , then projection of vec(a) on vec(b) is