Home
Class 12
MATHS
If S is the set of all real x such that ...

If `S` is the set of all real `x` such that `(2x-1)/(2x^(3)+3x^(2)+x)` is positive then S cantains

A

`(-infty,-(3)/(2))`

B

`(-(3)/(2),(1)/(4))`

C

`(-(1)/(4),(1)/(2))`

D

`((1)/(2),3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the set \( S \) of all real numbers \( x \) such that the expression \[ \frac{2x - 1}{2x^3 + 3x^2 + x} \] is positive. ### Step-by-step Solution: 1. **Identify the Numerator and Denominator**: - The numerator is \( 2x - 1 \). - The denominator is \( 2x^3 + 3x^2 + x \). 2. **Set the Numerator Greater than Zero**: - For the fraction to be positive, both the numerator and denominator must be either both positive or both negative. - First, solve \( 2x - 1 > 0 \): \[ 2x > 1 \implies x > \frac{1}{2} \] 3. **Set the Denominator Greater than Zero**: - Now, we need to find when \( 2x^3 + 3x^2 + x > 0 \). - Factor the denominator: \[ x(2x^2 + 3x + 1) > 0 \] - Find the roots of \( 2x^2 + 3x + 1 = 0 \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = \frac{-3 \pm \sqrt{1}}{4} = \frac{-3 \pm 1}{4} \] - This gives us the roots: \[ x = -\frac{1}{2} \quad \text{and} \quad x = -1 \] 4. **Determine Intervals**: - The critical points from the numerator and denominator are \( -1, -\frac{1}{2}, \frac{1}{2}, 0 \). - We will test the sign of the expression in the intervals: - \( (-\infty, -1) \) - \( (-1, -\frac{1}{2}) \) - \( (-\frac{1}{2}, 0) \) - \( (0, \frac{1}{2}) \) - \( (\frac{1}{2}, \infty) \) 5. **Test Each Interval**: - **Interval \( (-\infty, -1) \)**: Choose \( x = -2 \): \[ \frac{2(-2) - 1}{2(-2)^3 + 3(-2)^2 + (-2)} = \frac{-4 - 1}{-16 + 12 - 2} = \frac{-5}{-6} > 0 \] - **Interval \( (-1, -\frac{1}{2}) \)**: Choose \( x = -0.75 \): \[ \frac{2(-0.75) - 1}{2(-0.75)^3 + 3(-0.75)^2 + (-0.75)} = \frac{-1.5 - 1}{-0.84375 + 1.6875 - 0.75} < 0 \] - **Interval \( (-\frac{1}{2}, 0) \)**: Choose \( x = -0.25 \): \[ \frac{2(-0.25) - 1}{2(-0.25)^3 + 3(-0.25)^2 + (-0.25)} = \frac{-0.5 - 1}{-0.03125 + 0.1875 - 0.25} < 0 \] - **Interval \( (0, \frac{1}{2}) \)**: Choose \( x = 0.25 \): \[ \frac{2(0.25) - 1}{2(0.25)^3 + 3(0.25)^2 + (0.25)} = \frac{0.5 - 1}{0.03125 + 0.1875 + 0.25} < 0 \] - **Interval \( (\frac{1}{2}, \infty) \)**: Choose \( x = 1 \): \[ \frac{2(1) - 1}{2(1)^3 + 3(1)^2 + (1)} = \frac{2 - 1}{2 + 3 + 1} = \frac{1}{6} > 0 \] 6. **Combine Results**: - The expression is positive in the intervals \( (-\infty, -1) \) and \( (\frac{1}{2}, \infty) \). - Exclude points where the denominator is zero: \( x = -1, -\frac{1}{2}, 0 \). ### Final Set \( S \): \[ S = (-\infty, -1) \cup \left(-\frac{1}{2}, 0\right) \cup \left(\frac{1}{2}, \infty\right) \]

To solve the problem, we need to determine the set \( S \) of all real numbers \( x \) such that the expression \[ \frac{2x - 1}{2x^3 + 3x^2 + x} \] is positive. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE|Exercise MATHEMATICS|263 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPER

    RESONANCE|Exercise CHEMISTRY|37 Videos
  • TEST SERIES

    RESONANCE|Exercise MATHEMATICS|131 Videos

Similar Questions

Explore conceptually related problems

If S is the set of all real x such that (2x-1)/(2x^(3)+3x^(2)+x) is positive (-oo,-(3)/(2)) b.(-(3)/(2),(1)/(4)) c.(-(1)/(4),(1)/(2)) d.((1)/(2),3) e. None of these

Find all the real values of x such that (2x-1)/(2x^3+3x^2+x)gt0

Knowledge Check

  • If S is the set of all real x such that (2x-1)(x^(3)+2x^(2)+x) gt 0 , then S contains which of the following intervals :

    A
    `((-3)/(2),(1)/(2))`
    B
    `((-3)/(2),(-1)/(4))`
    C
    `((-1)/(4),(1)/(2))`
    D
    `((1)/(2),3)`
  • If denote the set of all real x for which (x^(2)+x+1)^(x) lt 1 , then S =

    A
    `(1,oo)`
    B
    `(-1,oo)`
    C
    `(-oo,-1)`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    If S is the set of all real numbers x for which >0(2x-1)/(2x^(3)+3x^(2)+x) and P is the subset of S ,

    If S is the set of all real 'x' such that (x^2(5-x)(1-2x))/((5x+1)(x+2)) is negative and (3x+1)/(6x^3+x^2-x) is positive, then S contains

    Find the set of all s for which (2x)/(2x^(2)+5x+2) gt (1)/(x+10

    The set of all real numbers x such that x^(2)+2x,2x+3 and x^(2)+3x+8 are the sides of a triangle is …………

    Let S denotes the set of all points where 5sqrt(x^(2)|x|^(3))-3sqrt(x^(2)|x|)-1 is not differentiable then s is a subset of -

    the values of a for which (a^(2)-1)x^(2)+2(a-1)x+2 is positive for all real x are.