Home
Class 12
MATHS
If S is the set of all real x such that ...

If `S` is the set of all real `x` such that `(2x-1)/(2x^(3)+3x^(2)+x)` is positive then S cantains

A

`(-infty,-(3)/(2))`

B

`(-(3)/(2),(1)/(4))`

C

`(-(1)/(4),(1)/(2))`

D

`((1)/(2),3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the set \( S \) of all real numbers \( x \) such that the expression \[ \frac{2x - 1}{2x^3 + 3x^2 + x} \] is positive. ### Step-by-step Solution: 1. **Identify the Numerator and Denominator**: - The numerator is \( 2x - 1 \). - The denominator is \( 2x^3 + 3x^2 + x \). 2. **Set the Numerator Greater than Zero**: - For the fraction to be positive, both the numerator and denominator must be either both positive or both negative. - First, solve \( 2x - 1 > 0 \): \[ 2x > 1 \implies x > \frac{1}{2} \] 3. **Set the Denominator Greater than Zero**: - Now, we need to find when \( 2x^3 + 3x^2 + x > 0 \). - Factor the denominator: \[ x(2x^2 + 3x + 1) > 0 \] - Find the roots of \( 2x^2 + 3x + 1 = 0 \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = \frac{-3 \pm \sqrt{1}}{4} = \frac{-3 \pm 1}{4} \] - This gives us the roots: \[ x = -\frac{1}{2} \quad \text{and} \quad x = -1 \] 4. **Determine Intervals**: - The critical points from the numerator and denominator are \( -1, -\frac{1}{2}, \frac{1}{2}, 0 \). - We will test the sign of the expression in the intervals: - \( (-\infty, -1) \) - \( (-1, -\frac{1}{2}) \) - \( (-\frac{1}{2}, 0) \) - \( (0, \frac{1}{2}) \) - \( (\frac{1}{2}, \infty) \) 5. **Test Each Interval**: - **Interval \( (-\infty, -1) \)**: Choose \( x = -2 \): \[ \frac{2(-2) - 1}{2(-2)^3 + 3(-2)^2 + (-2)} = \frac{-4 - 1}{-16 + 12 - 2} = \frac{-5}{-6} > 0 \] - **Interval \( (-1, -\frac{1}{2}) \)**: Choose \( x = -0.75 \): \[ \frac{2(-0.75) - 1}{2(-0.75)^3 + 3(-0.75)^2 + (-0.75)} = \frac{-1.5 - 1}{-0.84375 + 1.6875 - 0.75} < 0 \] - **Interval \( (-\frac{1}{2}, 0) \)**: Choose \( x = -0.25 \): \[ \frac{2(-0.25) - 1}{2(-0.25)^3 + 3(-0.25)^2 + (-0.25)} = \frac{-0.5 - 1}{-0.03125 + 0.1875 - 0.25} < 0 \] - **Interval \( (0, \frac{1}{2}) \)**: Choose \( x = 0.25 \): \[ \frac{2(0.25) - 1}{2(0.25)^3 + 3(0.25)^2 + (0.25)} = \frac{0.5 - 1}{0.03125 + 0.1875 + 0.25} < 0 \] - **Interval \( (\frac{1}{2}, \infty) \)**: Choose \( x = 1 \): \[ \frac{2(1) - 1}{2(1)^3 + 3(1)^2 + (1)} = \frac{2 - 1}{2 + 3 + 1} = \frac{1}{6} > 0 \] 6. **Combine Results**: - The expression is positive in the intervals \( (-\infty, -1) \) and \( (\frac{1}{2}, \infty) \). - Exclude points where the denominator is zero: \( x = -1, -\frac{1}{2}, 0 \). ### Final Set \( S \): \[ S = (-\infty, -1) \cup \left(-\frac{1}{2}, 0\right) \cup \left(\frac{1}{2}, \infty\right) \]

To solve the problem, we need to determine the set \( S \) of all real numbers \( x \) such that the expression \[ \frac{2x - 1}{2x^3 + 3x^2 + x} \] is positive. ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE|Exercise MATHEMATICS|263 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPER

    RESONANCE|Exercise CHEMISTRY|37 Videos
  • TEST SERIES

    RESONANCE|Exercise MATHEMATICS|131 Videos

Similar Questions

Explore conceptually related problems

If S is the set of all real x such that (2x-1)/(2x^(3)+3x^(2)+x) is positive (-oo,-(3)/(2)) b.(-(3)/(2),(1)/(4)) c.(-(1)/(4),(1)/(2)) d.((1)/(2),3) e. None of these

If S is the set of all real x such that (2x-1)(x^(3)+2x^(2)+x) gt 0 , then S contains which of the following intervals :

Find all the real values of x such that (2x-1)/(2x^3+3x^2+x)gt0

If S is the set of all real numbers x for which >0(2x-1)/(2x^(3)+3x^(2)+x) and P is the subset of S ,

If S is the set of all real 'x' such that (x^2(5-x)(1-2x))/((5x+1)(x+2)) is negative and (3x+1)/(6x^3+x^2-x) is positive, then S contains

Find the set of all s for which (2x)/(2x^(2)+5x+2) gt (1)/(x+10

Let S denotes the set of all points where 5sqrt(x^(2)|x|^(3))-3sqrt(x^(2)|x|)-1 is not differentiable then s is a subset of -

the values of a for which (a^(2)-1)x^(2)+2(a-1)x+2 is positive for all real x are.

If denote the set of all real x for which (x^(2)+x+1)^(x) lt 1 , then S =

RESONANCE-TEST PAPERS-Math
  1. The equation (log(8)((8)/(x^(2))))/((log(8)x)^(2))=3 has

    Text Solution

    |

  2. Which of the following is not a rational number.

    Text Solution

    |

  3. If S is the set of all real x such that (2x-1)/(2x^(3)+3x^(2)+x) is po...

    Text Solution

    |

  4. The equation x^3/4((log)2x)^(2+(log)2x-5/4)=sqrt(2) has at least one r...

    Text Solution

    |

  5. The quadratic equation ax^(2)+bx+c=0 has real roots if:

    Text Solution

    |

  6. Let Delta^(2) be the discriminant and alpha,beta be the roots of the e...

    Text Solution

    |

  7. For which of the following graphs of the quadratic expression y=ax^(2)...

    Text Solution

    |

  8. if (3sin^(-1)x+pix-pi)^(2)+{sin(cos^(-1)((x)/(5)))}^(2)-2sin(cos^(-1)(...

    Text Solution

    |

  9. For the A.P given by a(1),a(2). . .a(n) . . . ., the equation satisfi...

    Text Solution

    |

  10. If sum(r=1)^(n)r(r+1)(2r+3)=an^(4)+bn^(3)+cn^(2)+dn+e, then.

    Text Solution

    |

  11. if b(1),b(2),b(3)(b(1)gt0) are three successive terms of a G.P. with c...

    Text Solution

    |

  12. The value of lamda so that the matric A^(-1)lamdaI is singular where A...

    Text Solution

    |

  13. If F(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] ...

    Text Solution

    |

  14. Let f(x)=(sin^(-1)x)/(cos^(-1)x)+(cos^(-1)x)/(tan^(-1)x)+(tan^(-1)x)/(...

    Text Solution

    |

  15. The value of x for which |{:(x,2,2),(3,x,2),(3,3,x):}|+|{:(1-x,2,4),(2...

    Text Solution

    |

  16. Let f(x)=-4.sqrt(e^(1-x))+1+x+(x^(2))/(2)+(x^(3))/(3). If g(x) is inve...

    Text Solution

    |

  17. Find the integral values of a for which the equation x^4-(a^2-5a+6)x^2...

    Text Solution

    |

  18. Find the number of positive integral solution of the equation tan^(-1)...

    Text Solution

    |

  19. if the equation x^(4)-4x^(3)+ax^(2)+bx+1=0 has four positive roots, th...

    Text Solution

    |

  20. The sum of three numbers forming a geometric progression is equal to 5...

    Text Solution

    |