Home
Class 10
MATHS
If f(x)=x^(2)+2x-2 and if f(s-1)=1, what...

If `f(x)=x^(2)+2x-2` and if `f(s-1)=1`, what is the smallest possible value of s ?

A

`-3`

B

`-2`

C

`-1`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: 1. **Substitute \( s - 1 \) into the function \( f(x) \)**: We know that \( f(x) = x^2 + 2x - 2 \). We need to find \( f(s - 1) \): \[ f(s - 1) = (s - 1)^2 + 2(s - 1) - 2 \] 2. **Set the equation equal to 1**: According to the problem, \( f(s - 1) = 1 \): \[ (s - 1)^2 + 2(s - 1) - 2 = 1 \] 3. **Simplify the equation**: First, expand \( (s - 1)^2 \): \[ (s - 1)^2 = s^2 - 2s + 1 \] Now substitute this back into the equation: \[ s^2 - 2s + 1 + 2(s - 1) - 2 = 1 \] Simplifying further: \[ s^2 - 2s + 1 + 2s - 2 - 2 = 1 \] Combine like terms: \[ s^2 - 3 = 1 \] 4. **Rearranging the equation**: Add 3 to both sides: \[ s^2 = 4 \] 5. **Taking the square root**: Taking the square root of both sides gives us: \[ s = \pm 2 \] 6. **Finding the smallest possible value of \( s \)**: The two possible values for \( s \) are \( 2 \) and \( -2 \). The smallest possible value is: \[ s = -2 \] Thus, the smallest possible value of \( s \) is \( -2 \).

To solve the problem, we will follow these steps: 1. **Substitute \( s - 1 \) into the function \( f(x) \)**: We know that \( f(x) = x^2 + 2x - 2 \). We need to find \( f(s - 1) \): \[ f(s - 1) = (s - 1)^2 + 2(s - 1) - 2 \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTIONS

    KAPLAN|Exercise FUNCTIONS FOLLOW - UP TEST|6 Videos
  • EXPONENTS, RADICALS, POLYNOMIALS, AND RATIONAL EXPRESSIONS

    KAPLAN|Exercise Multiple Choice Question|20 Videos
  • FUNCTIONS AND FUNCTION NOTATION

    KAPLAN|Exercise Multiple Choice Question|20 Videos

Similar Questions

Explore conceptually related problems

If 2x^(2)+3ax-7lt-17 , what is the smallest possible integer value of a when x=-1 ?

Let f (x) =-1 +|x-2| and g (x) =1-|x| then set of all possible value (s) of for which (fog) (x) is discontinuous is:

Knowledge Check

  • Function f is defined by the equation f(x)=ax^(2)+(2)/(a)x . If f(3)-f(2)=1 , what is the smallest possible value of a?

    A
    `(1)/(6)`
    B
    `(1)/(5)`
    C
    `(1)/(2)`
    D
    `(1)/(2)`
  • If f(x)=sqrt(3x-2) , what is the smallest possible value of f(x)?

    A
    `0`
    B
    `(2)/(3)`
    C
    `1`
    D
    `2`
  • If 2(x-4)le(1)/(2)(5-3x) and x is an integer, what is the smallest possible value of x^(2) ?

    A
    `(1)/(4)`
    B
    `1`
    C
    `4`
    D
    `9`
  • Similar Questions

    Explore conceptually related problems

    Let y=f (x) and x/y (dy)/(dx) =(3x ^(2)-y)/(2y-x^(2)),f(1)=1 then the possible value of 1/3 f(3) equals :

    If function f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x) , then the value of g'(1) is

    If f(x)=2x+1 and f(a)=2 , what is the value of a?

    If x^(2)-2x-15=(x+r)(x+s) for all values of x, what is one possible value of r-s?

    If f(x)=(1)/((x+1)!) , what is the smallest integer x such that f(x) lt 0.000005 ?