Home
Class 12
MATHS
bar(OA)=bar(i)+2bar(j)+2bar(k) .In the p...

`bar(OA)=bar(i)+2bar(j)+2bar(k)` .In the plane `bar(OA)` and `bar(i)` rotate `bar(OA)` through `90^(@)` about the origin `o` such that the new position of `bar(OA)` can

A

`(1)/(sqrt(2))(4hat(i)-hat(j)-hat(k))`

B

`(1)/(sqrt(2))(-4hat(i)+hat(j)+hat(k))`

C

`sqrt(2)(2hat(i)-2hat(k))`

D

`sqrt(2)(6hat(i)-3hat(k))`

Text Solution

Verified by Experts

The correct Answer is:
A

Given `vec(OA)=hat(i)+2hat(j)+2hat(k)`
Let new position of `vec(OA) " is " vec(r)=ahat(i)+bhat(j)+chat(k)`
`because vec(OA),vec(r) " and " hat(i) " are coplaner" =|(1,2,2),(a,b,c),(1,0,0)| = 0 implies b = c`
`because vec(r)_|_vec(OA) implies a+2b+2c=0impliesa=-4b{because b=c}`
`therefore vec(r)=-4bhat(j)+bhat(j)+bhat(k)=-b(4hat(i)-hat(j)-hat(k))`
Also `|vec(r)|=|vec(OA)|impliesb=pm(1)/(sqrt(2))impliesvec(r)=pm(1)/(sqrt(2))(4hat(i)-hat(j)-hat(k))`
`because vec(r)` makes acute angle with positive x-axis `implies vec(r)=(1)/(sqrt(2))(4hat(i)-hat(j)-hat(k))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART - I : MATHEMATICS|60 Videos
  • TEST PAPERS

    VIBRANT|Exercise PART - I : MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

If bar(a)=bar(i)+bar(j)-2bar(k) then sum[(bar(a)xxbar(i))xxvec j]^(2)=

If bar(a)=bar(i)+bar(j)-bar(2)k then sum[(bar(a)xxbar(i))xxvec j]^(2)=

If the vectors bar(a)=2bar(i)+3bar(j)+6bar(k) and bar(b) are collinear and |bar(b)|=21 , then bar(b) equals to

Consider the parallelopiped with sides bar(a)=3bar(i)+2bar(j)+bar(k),bar(b)=bar(i)+bar(j)+2bar(k) and bar(c)=bar(i)+3bar(j)+3bar(k) then angle between bar(a) and the plane containing the face determined by bar(b) and bar(c) is

If bar(a)=bar(i)+2bar(j)+bar(k) , (b)=bar(i)-bar(j)+bar(k) and bar(c)=bar(i)+bar(j)-bar(k) . A vector in the plane of bar(a) and bar(b) whose projection on bar(c) is (1)/(sqrt(3)) is

The vectors bar(i)+4bar(j)+6bar(k),2bar(i)+4bar(j)+3bar(k) and bar(i)+2bar(j)+3bar(k) form

If bar(a)=2bar(i)-3bar(j)+6bar(k) , bar(b)=-2bar(i)+2bar(j)-bar(k) and k =(the projection of bar(a) on bar(b)) /(the projection of bar(b) on bar(a)) then the value of 3k=

The lines bar(r)=bar(i)+bar(j)-bar(k)+s(3bar(i)-bar(j)) and bar(r)=4bar(i)-bar(k)+t(2bar(i)+3bar(k))

bar(F),=abar(i)+3bar(j)+6bar(k) and , bar(r),=2bar(i)-6bar(j)-12bar(k) .The value of a for which the toque is 0

If bar(a)=bar(i)+2bar(j)+bar(k),bar(b)=2bar(j)+bar(k)-bar(i), then component of bar(a) perpendicular to bar(b) is