Home
Class 12
MATHS
If (x+iy)^(1//3)=a+ib, " then " (x)/(a)+...

If `(x+iy)^(1//3)=a+ib, " then " (x)/(a)+(y)/(b)` equals

A

`4(a^(2)-b^(2))`

B

`2(a^(2)-b^(2))`

C

`2(a^(2)+b^(2))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ (x + iy)^{\frac{1}{3}} = a + ib \] ### Step 1: Cube both sides To eliminate the cube root, we cube both sides of the equation: \[ x + iy = (a + ib)^3 \] ### Step 2: Expand the right-hand side Using the binomial expansion, we expand \((a + ib)^3\): \[ (a + ib)^3 = a^3 + 3a^2(ib) + 3a(ib)^2 + (ib)^3 \] Calculating each term: - \( (ib)^2 = -b^2 \) - \( (ib)^3 = -ib^3 \) Thus, we have: \[ = a^3 + 3a^2(ib) - 3ab^2 - ib^3 \] Combining the real and imaginary parts gives us: \[ = (a^3 - 3ab^2) + i(3a^2b - b^3) \] ### Step 3: Equate real and imaginary parts Now we equate the real and imaginary parts from both sides: 1. Real part: \( x = a^3 - 3ab^2 \) 2. Imaginary part: \( y = 3a^2b - b^3 \) ### Step 4: Express \( \frac{x}{a} + \frac{y}{b} \) We need to find \( \frac{x}{a} + \frac{y}{b} \): \[ \frac{x}{a} = \frac{a^3 - 3ab^2}{a} = a^2 - 3b^2 \] \[ \frac{y}{b} = \frac{3a^2b - b^3}{b} = 3a^2 - b^2 \] Adding these two results together: \[ \frac{x}{a} + \frac{y}{b} = (a^2 - 3b^2) + (3a^2 - b^2) \] ### Step 5: Combine like terms Combining the terms gives: \[ = a^2 + 3a^2 - 3b^2 - b^2 = 4a^2 - 4b^2 \] ### Final Result Thus, we have: \[ \frac{x}{a} + \frac{y}{b} = 4(a^2 - b^2) \]

To solve the problem, we start with the equation given: \[ (x + iy)^{\frac{1}{3}} = a + ib \] ### Step 1: Cube both sides To eliminate the cube root, we cube both sides of the equation: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART-II : MATHEMATICS|20 Videos

Similar Questions

Explore conceptually related problems

If (x+iy)^(1/3)=a+ib, then (x)/(a)=(y)/(b)=0b1c.-1d .none of these

If (x+iy)=a+ib then (x)/(a)+(y)/(b)=

Knowledge Check

  • If x, y, a, b are real numbers such that (x+iy)^(1//5)=a + ib and p = (x)/(a) - (y)/(b) , then

    A
    `a-b` is factor of p
    B
    `a+b` is a factor of p
    C
    `a+ib` is a factor of p
    D
    `a-ib` is a factor of p
  • If (x + iy) ^( 1//3) = 2 + 3i, then 3x + 2y is equal to

    A
    `- 20`
    B
    `- 60`
    C
    `- 120`
    D
    `60`
  • If z = x + iy, z^(1//3) = a - ib, then x/a - y/b = k (a^2 - b^2) . Where k is equal to

    A
    1
    B
    2
    C
    3
    D
    4
  • Similar Questions

    Explore conceptually related problems

    If z= x+iy , z^(1//3) = a- ib and (x)/(a) - (y)/(b) = lambda (a^(y) -b^(y) ) , then lambda is equal to

    If z = x + iy, z^(1//3) = a - i b , and (x)/( a) - (y)/( b) = lambda ( a^(2) - b^(2)) " then " lambda =

    (x+iy)^((1)/(3))=(a+ib) then prove that ((x)/(a)+(y)/(b))=4(a^(2)-b^(2))

    If (x+iy)^(1//3)=a+ib,"where"i=sqrt(-1),then ((x)/(a)+(y)/(b)) is equal to

    If z = x + iy, z^(1//3) = a - ib , then x/a - y/b = ka^2 - b^2 , where k is equal to :