Suppose `vecx=(-3,-1), vecy=(-1,4).` Find the magnitude of `vecx+vecy`.
A
2
B
3
C
4
D
5
Text Solution
AI Generated Solution
The correct Answer is:
To find the magnitude of the vector sum \(\vec{x} + \vec{y}\), we will follow these steps:
### Step 1: Represent the vectors
Given:
\[
\vec{x} = (-3, -1) \quad \text{and} \quad \vec{y} = (-1, 4)
\]
We can represent these vectors in the form of unit vectors:
\[
\vec{x} = -3 \hat{i} - 1 \hat{j} \quad \text{and} \quad \vec{y} = -1 \hat{i} + 4 \hat{j}
\]
### Step 2: Add the vectors
To find \(\vec{x} + \vec{y}\), we add the corresponding components:
\[
\vec{x} + \vec{y} = (-3 \hat{i} - 1 \hat{j}) + (-1 \hat{i} + 4 \hat{j})
\]
Calculating the \(i\) and \(j\) components separately:
\[
\text{For } \hat{i}: -3 - 1 = -4
\]
\[
\text{For } \hat{j}: -1 + 4 = 3
\]
Thus, we have:
\[
\vec{x} + \vec{y} = -4 \hat{i} + 3 \hat{j}
\]
### Step 3: Calculate the magnitude
The magnitude of a vector \(\vec{v} = a \hat{i} + b \hat{j}\) is given by:
\[
|\vec{v}| = \sqrt{a^2 + b^2}
\]
For our vector \(\vec{x} + \vec{y} = -4 \hat{i} + 3 \hat{j}\):
\[
|\vec{x} + \vec{y}| = \sqrt{(-4)^2 + (3)^2}
\]
Calculating the squares:
\[
= \sqrt{16 + 9} = \sqrt{25}
\]
Finally, taking the square root:
\[
= 5
\]
### Final Answer
The magnitude of \(\vec{x} + \vec{y}\) is \(5\).
---
To find the magnitude of the vector sum \(\vec{x} + \vec{y}\), we will follow these steps:
### Step 1: Represent the vectors
Given:
\[
\vec{x} = (-3, -1) \quad \text{and} \quad \vec{y} = (-1, 4)
\]
We can represent these vectors in the form of unit vectors:
...
Topper's Solved these Questions
VECTORS
ENGLISH SAT|Exercise EXERCISES|3 Videos
TRIGONOMETRIC FUNCTIONS
ENGLISH SAT|Exercise MCQs (Exercise)|30 Videos
Similar Questions
Explore conceptually related problems
Let veca=4veci+3vecj and vecb=3veci+4vecj . a.Find the magnitudes of a. veca, b. vecb, c. veca+vecb and d. veca-vecb.
A wire of length l carries a current I along the x-asis. A magnetic field exists which is given as vecB=B_0(veci+vecj+veck) T. find the magnitude of the magnetic force acting on the wire.
If vec x and vecy are unit vectors and |vecz| = 2/sqrt7 such that vecz + vecz xx vecx = vecy then find the angle theta between vecx and vecz
If is given that vecx= (vecbxxvecc)/([veca,vecb,vecc]), vecy=(veccxxveca)/[(veca,vecb,vecc)], vecz=(vecaxxvecb)/[(veca,vecb,vecc)] where veca,vecb,vecc are non coplanar vectors. Find the value of vecx.(veca+vecb)+vecy.(vecc+vecb)+vecz(vecc+veca)
If veca = 2veci+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)
If veca = 2vecj+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)
A rigid body is rotating about an axis through the point (3,-1,-2). If the particle at the point (4,1,0) has velocity 4veci-4vecj+2veck , find the magnitude and direction of the angular velocity of the body.
Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb and vecx xx vecy = vecc . Find vecx, vecy, vecz in terms of veca, vecb, vecc .
Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb and vecx xx vecy = vecc . Find vecx, vecy, vecz in terms of veca, vecb, vecc .
Let veca , vecb and vecc be unit vectors such that veca+vecb+vecc=vecx, veca.vecx =1, vecb.vecx = 3/2 ,|vecx|=2 then find theh angle between vecc and vecx .