Home
Class 12
MATHS
Suppose vecx=(-3,-1), vecy=(-1,4). Find ...

Suppose `vecx=(-3,-1), vecy=(-1,4).` Find the magnitude of `vecx+vecy`.

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of the vector sum \(\vec{x} + \vec{y}\), we will follow these steps: ### Step 1: Represent the vectors Given: \[ \vec{x} = (-3, -1) \quad \text{and} \quad \vec{y} = (-1, 4) \] We can represent these vectors in the form of unit vectors: \[ \vec{x} = -3 \hat{i} - 1 \hat{j} \quad \text{and} \quad \vec{y} = -1 \hat{i} + 4 \hat{j} \] ### Step 2: Add the vectors To find \(\vec{x} + \vec{y}\), we add the corresponding components: \[ \vec{x} + \vec{y} = (-3 \hat{i} - 1 \hat{j}) + (-1 \hat{i} + 4 \hat{j}) \] Calculating the \(i\) and \(j\) components separately: \[ \text{For } \hat{i}: -3 - 1 = -4 \] \[ \text{For } \hat{j}: -1 + 4 = 3 \] Thus, we have: \[ \vec{x} + \vec{y} = -4 \hat{i} + 3 \hat{j} \] ### Step 3: Calculate the magnitude The magnitude of a vector \(\vec{v} = a \hat{i} + b \hat{j}\) is given by: \[ |\vec{v}| = \sqrt{a^2 + b^2} \] For our vector \(\vec{x} + \vec{y} = -4 \hat{i} + 3 \hat{j}\): \[ |\vec{x} + \vec{y}| = \sqrt{(-4)^2 + (3)^2} \] Calculating the squares: \[ = \sqrt{16 + 9} = \sqrt{25} \] Finally, taking the square root: \[ = 5 \] ### Final Answer The magnitude of \(\vec{x} + \vec{y}\) is \(5\). ---

To find the magnitude of the vector sum \(\vec{x} + \vec{y}\), we will follow these steps: ### Step 1: Represent the vectors Given: \[ \vec{x} = (-3, -1) \quad \text{and} \quad \vec{y} = (-1, 4) \] We can represent these vectors in the form of unit vectors: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTORS

    ENGLISH SAT|Exercise EXERCISES|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    ENGLISH SAT|Exercise MCQs (Exercise)|30 Videos

Similar Questions

Explore conceptually related problems

Let veca=4veci+3vecj and vecb=3veci+4vecj . a.Find the magnitudes of a. veca, b. vecb, c. veca+vecb and d. veca-vecb.

A wire of length l carries a current I along the x-asis. A magnetic field exists which is given as vecB=B_0(veci+vecj+veck) T. find the magnitude of the magnetic force acting on the wire.

If vec x and vecy are unit vectors and |vecz| = 2/sqrt7 such that vecz + vecz xx vecx = vecy then find the angle theta between vecx and vecz

If is given that vecx= (vecbxxvecc)/([veca,vecb,vecc]), vecy=(veccxxveca)/[(veca,vecb,vecc)], vecz=(vecaxxvecb)/[(veca,vecb,vecc)] where veca,vecb,vecc are non coplanar vectors. Find the value of vecx.(veca+vecb)+vecy.(vecc+vecb)+vecz(vecc+veca)

If veca = 2veci+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)

If veca = 2vecj+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)

A rigid body is rotating about an axis through the point (3,-1,-2). If the particle at the point (4,1,0) has velocity 4veci-4vecj+2veck , find the magnitude and direction of the angular velocity of the body.

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb and vecx xx vecy = vecc . Find vecx, vecy, vecz in terms of veca, vecb, vecc .

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb and vecx xx vecy = vecc . Find vecx, vecy, vecz in terms of veca, vecb, vecc .

Let veca , vecb and vecc be unit vectors such that veca+vecb+vecc=vecx, veca.vecx =1, vecb.vecx = 3/2 ,|vecx|=2 then find theh angle between vecc and vecx .