Home
Class 11
MATHS
Find the value of tan pi/8....

Find the value of tan `pi/8`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan \frac{\pi}{8} \), we can use the double angle identity for tangent. Here’s a step-by-step solution: ### Step 1: Use the double angle identity We know that: \[ \tan(2x) = \frac{2\tan x}{1 - \tan^2 x} \] We can set \( x = \frac{\pi}{8} \). Therefore, \( 2x = \frac{\pi}{4} \). ### Step 2: Substitute into the identity Substituting \( x = \frac{\pi}{8} \) into the identity, we have: \[ \tan\left(\frac{\pi}{4}\right) = \frac{2\tan\left(\frac{\pi}{8}\right)}{1 - \tan^2\left(\frac{\pi}{8}\right)} \] ### Step 3: Know the value of \( \tan\left(\frac{\pi}{4}\right) \) We know that: \[ \tan\left(\frac{\pi}{4}\right) = 1 \] So we can write: \[ 1 = \frac{2\tan\left(\frac{\pi}{8}\right)}{1 - \tan^2\left(\frac{\pi}{8}\right)} \] ### Step 4: Let \( y = \tan\left(\frac{\pi}{8}\right) \) Let \( y = \tan\left(\frac{\pi}{8}\right) \). Then we can rewrite the equation as: \[ 1 = \frac{2y}{1 - y^2} \] ### Step 5: Cross-multiply to eliminate the fraction Cross-multiplying gives us: \[ 1 - y^2 = 2y \] ### Step 6: Rearrange the equation Rearranging the equation leads to: \[ y^2 + 2y - 1 = 0 \] ### Step 7: Solve the quadratic equation Now we can use the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = 2, c = -1 \): \[ y = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ y = \frac{-2 \pm \sqrt{4 + 4}}{2} \] \[ y = \frac{-2 \pm \sqrt{8}}{2} \] \[ y = \frac{-2 \pm 2\sqrt{2}}{2} \] \[ y = -1 \pm \sqrt{2} \] ### Step 8: Determine the correct value This gives us two potential solutions: \[ y = -1 + \sqrt{2} \quad \text{and} \quad y = -1 - \sqrt{2} \] Since \( \tan\left(\frac{\pi}{8}\right) \) must be positive (as \( \frac{\pi}{8} \) is in the first quadrant), we take: \[ \tan\left(\frac{\pi}{8}\right) = -1 + \sqrt{2} \] ### Final Answer Thus, the value of \( \tan\left(\frac{\pi}{8}\right) \) is: \[ \tan\left(\frac{\pi}{8}\right) = \sqrt{2} - 1 \]

To find the value of \( \tan \frac{\pi}{8} \), we can use the double angle identity for tangent. Here’s a step-by-step solution: ### Step 1: Use the double angle identity We know that: \[ \tan(2x) = \frac{2\tan x}{1 - \tan^2 x} \] We can set \( x = \frac{\pi}{8} \). Therefore, \( 2x = \frac{\pi}{4} \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.4|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.3|25 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.5|16 Videos
  • STRAIGHT LINES

    NCERT|Exercise EXERCISE 10.5|2 Videos

Similar Questions

Explore conceptually related problems

Find the value of tan. pi/20tan. (3pi)/20tan. (5pi)/20tan. (7pi)/20tan. (9pi)/20 .

Find the Value of (tan pi)/(16)

Knowledge Check

  • Find the value of cot (pi)/(32)-"tan"(pi)/(32)-2"tan"(pi)/(16)

    A
    `4 "cot"(pi)/(8)`
    B
    0
    C
    `2"cot"(pi)/(8)`
    D
    `"cot"(pi)/(8)`
  • Find the value of tan "" (19pi)/(3) .

    A
    `(1)/( sqrt3)`
    B
    `sqrt3`
    C
    `(sqrt3)/(2)`
    D
    `(1)/(2)`
  • What of the value of tan.(pi)/(8).tan.(pi)/(12).tan.(pi)/(4).tan.(3pi)/(8)tan.(5pi)/(12) ?

    A
    `0`
    B
    `1`
    C
    `sqrt(3)`
    D
    `(1)/(sqrt(3))`
  • Similar Questions

    Explore conceptually related problems

    Find the value of tan (13 pi)/(12)

    tan2A=3/4 then find the value of tanA, (pi/2 lt A lt (3pi)/4)

    Find the Values of sin (pi/8) ,cos (pi/ 8) ,sec (pi/8) ,cosec (pi/8) ,tan (pi/8) and Cot (pi/8)

    Find the value of tan^(-1) (-tan.(13pi)/(8)) + cot^(-1) (-cot((9pi)/(8)))

    Find the value of (a) sin(pi)/(8) (b) cos(pi)/(8) (c) tan (pi)/(8)