Home
Class 11
MATHS
Prove that: sin (n + 1) x sin (n + 2)x +...

Prove that: `sin (n + 1) x sin (n + 2)x + cos (n + 1) x cos (n + 2) x = cos x`

Text Solution

AI Generated Solution

To prove the identity \( \sin(n+1)x \sin(n+2)x + \cos(n+1)x \cos(n+2)x = \cos x \), we will start from the left-hand side (LHS) and manipulate it to show that it equals the right-hand side (RHS). ### Step-by-Step Solution: **Step 1: Write down the left-hand side (LHS)** We start with the expression: \[ LHS = \sin(n+1)x \sin(n+2)x + \cos(n+1)x \cos(n+2)x ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.1|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.4|9 Videos
  • STRAIGHT LINES

    NCERT|Exercise EXERCISE 10.5|2 Videos

Similar Questions

Explore conceptually related problems

Prove that (i) cos (n + 2) x cos (n+1) x +sin (n+2) x sin (n+1) x = cos x) (ii) " cos " .((pi)/(4)-x) " cos " .((pi)/(4)-y) " - sin " ((pi)/(4)-x ) " sin " ((pi)/(4) -y) =" sin " (x+y)

Prove that nC_ (1) sin x * cos (n-1) x + nC_ (2) sin2x * cos (n-2) x + nC_ (3) sin3x * cos (n-3) x + ... + nC_ ( n) sin nx = 2 ^ (n-1) sin nn

Knowledge Check

  • The general value of x which satisfies the equation ( cos x + i sin x) ( cos 3 x + i sin 3 x) ( cos 5 x + i sin 5 x) . . . [ cos ( 2 n - 1) x + i sin ( 2 n - 1) x] = 1 is

    A
    `(r pi)/( n^(2))`
    B
    `(( r - 1) pi)/( n^(2))`
    C
    `((2 r + 1) pi)/( n^(3))`
    D
    ` (2 r pi)/( n^(2))`
  • Similar Questions

    Explore conceptually related problems

    Prove that (1 + sin x-cos x) / (1 + sin x + cos x) + (1 + sin x + cos x) / (1 + sin x-cos x) = 2cos ecx

    Prove that: sin(n+1)As in(n+2)A+cos(+1)A cos(n+2)A=cos A

    sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx

    sin x = 2 ^ (n) * cos (x) / (2) * cos (x) / (2 ^ (2)) * cos (x) / (2 ^ (3)) * ... * cos ( x) / (2 ^ (n)) * sin (x) / (2 ^ (n))

    Prove that: int_(0)^(2 pi)(x sin^(2n)x)/(sin^(2n)+cos^(2n)x)dx=pi^(2)

    cos x + cos2x + ... + cos nx = sin ((nx) / (2)) cos ec ((x) / (2)) cos (((n + 1) x) / (2))

    The determinant Delta=|(a^2,a,1),(cos(nx),cos (n + 1) x,cos(n+2) x),(sin(nx),sin (n +1)x,sin (n + 2) x)| is independent of