Home
Class 12
MATHS
If f(x)=sqrt(x^(2)-1) and g(x)=(10)/(x+2...

If `f(x)=sqrt(x^(2)-1) and g(x)=(10)/(x+2)`, then `g(f(3))`=

A

0.2

B

1.7

C

2.1

D

3.5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of \( g(f(3)) \) given the functions \( f(x) = \sqrt{x^2 - 1} \) and \( g(x) = \frac{10}{x + 2} \). ### Step 1: Calculate \( f(3) \) We start by substituting \( x = 3 \) into the function \( f(x) \). \[ f(3) = \sqrt{3^2 - 1} \] Calculating \( 3^2 - 1 \): \[ 3^2 = 9 \quad \Rightarrow \quad 9 - 1 = 8 \] Now, substituting back into the function: \[ f(3) = \sqrt{8} \] ### Step 2: Calculate \( g(f(3)) \) Now that we have \( f(3) = \sqrt{8} \), we need to find \( g(f(3)) \) which is \( g(\sqrt{8}) \). Substituting \( \sqrt{8} \) into the function \( g(x) \): \[ g(\sqrt{8}) = \frac{10}{\sqrt{8} + 2} \] ### Step 3: Simplify \( g(\sqrt{8}) \) First, we simplify \( \sqrt{8} \): \[ \sqrt{8} = \sqrt{4 \cdot 2} = 2\sqrt{2} \] Now substituting this back into \( g \): \[ g(\sqrt{8}) = \frac{10}{2\sqrt{2} + 2} \] Factoring out a 2 from the denominator: \[ g(\sqrt{8}) = \frac{10}{2(\sqrt{2} + 1)} = \frac{5}{\sqrt{2} + 1} \] ### Step 4: Rationalize the Denominator To simplify \( \frac{5}{\sqrt{2} + 1} \), we multiply the numerator and the denominator by \( \sqrt{2} - 1 \): \[ g(\sqrt{8}) = \frac{5(\sqrt{2} - 1)}{(\sqrt{2} + 1)(\sqrt{2} - 1)} = \frac{5(\sqrt{2} - 1)}{2 - 1} = 5(\sqrt{2} - 1) \] ### Step 5: Approximate the Value Now we can approximate \( 5(\sqrt{2} - 1) \). We know \( \sqrt{2} \approx 1.414 \): \[ \sqrt{2} - 1 \approx 1.414 - 1 = 0.414 \] Thus, \[ 5(\sqrt{2} - 1) \approx 5 \times 0.414 \approx 2.07 \] ### Final Answer Therefore, the value of \( g(f(3)) \) is approximately \( 2.07 \).

To solve the problem step by step, we need to find the value of \( g(f(3)) \) given the functions \( f(x) = \sqrt{x^2 - 1} \) and \( g(x) = \frac{10}{x + 2} \). ### Step 1: Calculate \( f(3) \) We start by substituting \( x = 3 \) into the function \( f(x) \). \[ f(3) = \sqrt{3^2 - 1} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If f(x)=sqrt(x^2+1),\ \ g(x)=(x+1)/(x^2+1) and h(x)=2x-3 , then find f^(prime)(h^(prime)(g^(prime)(x))) .

Suppose f and g are two functions such that f,g: R -> R f(x)=ln(1+sqrt(1+x^2)) and g(x)=ln(x+sqrt(1+x^2)) then find the value of xe^(g(x))f(1/x)+g'(x) at x=1

Knowledge Check

  • If f(x)=sqrt(x^(2)-3x+6) and g(x)=(156)/(x+17) , then what is the value of g(f(4)) ?

    A
    `5.8`
    B
    `7.4`
    C
    `7.7`
    D
    `8.2`
  • If f(x)=sqrt(2x+3) and g(x)=x^(2)+1 , then f(g(2))=

    A
    2.24
    B
    3
    C
    3.61
    D
    6
  • If f(x)=2x^(2)-4 and g(x)=2^(x) , the value of g(f(1)) is

    A
    `-4`
    B
    0
    C
    `1/4`
    D
    1
  • Similar Questions

    Explore conceptually related problems

    Let g (x )=f ( x- sqrt( 1-x ^(2))) and f ' (x) =1-x ^(2) then g'(x) equal to:

    If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

    If f(x)=x^(2) and g(x)=2x , then evaluate, (i) (f+g)(3)" "(ii) (f-g)(2) (iii) (f*g)(1)" "(iv) ((f)/(g))(5)

    If g(x)=x^(2)+x-1 and g(f(x))=4x^(2)-10x+5 then find f((5)/(4))

    If f(x) = x log x and g(x) = 10^(x) , then g(f(2)) =