Home
Class 12
MATHS
[(1,3),(-2,4)]+[(11,5),(-6,12)]=K[(3,2),...

`[(1,3),(-2,4)]+[(11,5),(-6,12)]=K[(3,2),(J,M)]`. Find the value of K+J+M.

A

2

B

4

C

6

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \([(1,3),(-2,4)] + [(11,5),(-6,12)] = K[(3,2),(J,M)]\), we will follow these steps: ### Step 1: Add the two matrices on the left side. We will add the corresponding entries of the two matrices. \[ \begin{pmatrix} 1 & 3 \\ -2 & 4 \end{pmatrix} + \begin{pmatrix} 11 & 5 \\ -6 & 12 \end{pmatrix} = \begin{pmatrix} 1 + 11 & 3 + 5 \\ -2 + (-6) & 4 + 12 \end{pmatrix} \] Calculating each entry: - First entry: \(1 + 11 = 12\) - Second entry: \(3 + 5 = 8\) - Third entry: \(-2 + (-6) = -8\) - Fourth entry: \(4 + 12 = 16\) So, the resulting matrix is: \[ \begin{pmatrix} 12 & 8 \\ -8 & 16 \end{pmatrix} \] ### Step 2: Set the resulting matrix equal to \(K[(3,2),(J,M)]\). This gives us: \[ \begin{pmatrix} 12 & 8 \\ -8 & 16 \end{pmatrix} = K \begin{pmatrix} 3 & 2 \\ J & M \end{pmatrix} \] ### Step 3: Multiply the right side by \(K\). This results in: \[ \begin{pmatrix} K \cdot 3 & K \cdot 2 \\ K \cdot J & K \cdot M \end{pmatrix} \] ### Step 4: Equate the corresponding entries. Now we equate the corresponding entries from both matrices: 1. \(K \cdot 3 = 12\) 2. \(K \cdot 2 = 8\) 3. \(K \cdot J = -8\) 4. \(K \cdot M = 16\) ### Step 5: Solve for \(K\). From the first equation: \[ K \cdot 3 = 12 \implies K = \frac{12}{3} = 4 \] ### Step 6: Verify \(K\) using the second equation. Using \(K = 4\) in the second equation: \[ K \cdot 2 = 8 \implies 4 \cdot 2 = 8 \quad \text{(True)} \] ### Step 7: Find \(J\) and \(M\). Using \(K = 4\): 1. From \(K \cdot J = -8\): \[ 4 \cdot J = -8 \implies J = \frac{-8}{4} = -2 \] 2. From \(K \cdot M = 16\): \[ 4 \cdot M = 16 \implies M = \frac{16}{4} = 4 \] ### Step 8: Calculate \(K + J + M\). Now we can calculate: \[ K + J + M = 4 + (-2) + 4 = 6 \] Thus, the final answer is: \[ \boxed{6} \]

To solve the equation \([(1,3),(-2,4)] + [(11,5),(-6,12)] = K[(3,2),(J,M)]\), we will follow these steps: ### Step 1: Add the two matrices on the left side. We will add the corresponding entries of the two matrices. \[ \begin{pmatrix} 1 & 3 \\ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If (2)/(3)j-(1)/(4)k=(5)/(2) , what is the value of 8j-3k ?

If [[1,2],[3,4]] [[3,1],[2,5]]=[[7,11],[k,23]], then write the value of k.

Knowledge Check

  • If 3j-(k_5)=16-4k , what is the value of j+k ?

    A
    `8`
    B
    `7`
    C
    `5`
    D
    `2`
  • Similar Questions

    Explore conceptually related problems

    Sum of the series 1+(1+2)+(1+2+3)+(1+2+3+4)+... to n terms be 1/m n(n+1)[(2n+1)/k+1] then find the value of k+m

    If vec(A)=4hat(i)+nhat(j)-2hat(k) and vec(B)=2hat(i)+3hat(j)+hat(k) , then find the value of n so that vec(A) bot vec(B)

    If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

    If vec(A)=3hat(i)+hat(j)+2hat(k) and vec(B)=2hat(i)-2hat(j)+4hat(k), then find the value of |vec(A)xxvec(B)|.

    If vec(A)=-hat(i)+3hat(j)+2hat(k) and vec(B)=3hat(i)+2hat(j)+2hat(k) then find the value of vec(A) times vec(B) .

    Forces acting on a particle have magnitude of 14N, 7N and 7N act in the direction of vectors 6hat(i)+2hat(j)+3hat(k),3hat(i)-2hat(j) +6hat(k),2hat(i)-3hat(j)-6hat(k) respectively. The forces remain constant while the particle is displaced from point A: (2,-1,-3) to B: (5,-1,1). Find the work done. The coordinates are specified in meters.

    A particle of mass 0.5 kg is subjected to a force which varies with distance as shown in figure 1. The work done by the force during the displacement from x=0 to x=4and x=4 to x=12 are respectively {:((1)20J","40J,(2)40J"," 40J,(3)20J","60J,(4)40J","80J):} 2. The increaase in kinetic energy of the particle during its displac ement from x=0 to x=12 m is {:((1)20J,(2)40J,(3)80J,(4)120J):} 3. If the speed of the particle at x=0 is 4 m/s, its speed st x=8 m is {:((1)8m//s,(2)16m//s,(3)32m//s,(4)4m//s):}