Home
Class 11
PHYSICS
Find with the help of vectors, the area ...

Find with the help of vectors, the area of the triangle with vertices `A(3,-1,2), B(1,-1,-3)` and `C(4,-3,1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the triangle with vertices \( A(3, -1, 2) \), \( B(1, -1, -3) \), and \( C(4, -3, 1) \) using vectors, we can follow these steps: ### Step 1: Define the position vectors of the points Let the position vectors of points A, B, and C be defined as: \[ \vec{A} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}, \quad \vec{B} = \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix}, \quad \vec{C} = \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix} \] ### Step 2: Find the vectors \( \vec{CA} \) and \( \vec{CB} \) The vectors from point C to points A and B can be calculated as follows: \[ \vec{CA} = \vec{A} - \vec{C} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} - \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 - 4 \\ -1 + 3 \\ 2 - 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} \] \[ \vec{CB} = \vec{B} - \vec{C} = \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix} - \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 - 4 \\ -1 + 3 \\ -3 - 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \\ -4 \end{pmatrix} \] ### Step 3: Calculate the cross product \( \vec{CA} \times \vec{CB} \) To find the area of the triangle, we need to compute the cross product \( \vec{CA} \times \vec{CB} \): \[ \vec{CA} \times \vec{CB} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 2 & 1 \\ -3 & 2 & -4 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 2 & 1 \\ 2 & -4 \end{vmatrix} - \hat{j} \begin{vmatrix} -1 & 1 \\ -3 & -4 \end{vmatrix} + \hat{k} \begin{vmatrix} -1 & 2 \\ -3 & 2 \end{vmatrix} \] Calculating each of the 2x2 determinants: \[ = \hat{i} (2 \cdot -4 - 1 \cdot 2) - \hat{j} (-1 \cdot -4 - 1 \cdot -3) + \hat{k} (-1 \cdot 2 - 2 \cdot -3) \] \[ = \hat{i} (-8 - 2) - \hat{j} (4 - 3) + \hat{k} (-2 + 6) \] \[ = -10\hat{i} - 1\hat{j} + 4\hat{k} \] Thus, \[ \vec{CA} \times \vec{CB} = \begin{pmatrix} -10 \\ -1 \\ 4 \end{pmatrix} \] ### Step 4: Calculate the magnitude of the cross product The magnitude of the cross product gives us twice the area of the triangle: \[ |\vec{CA} \times \vec{CB}| = \sqrt{(-10)^2 + (-1)^2 + 4^2} = \sqrt{100 + 1 + 16} = \sqrt{117} \] ### Step 5: Calculate the area of the triangle The area \( A \) of the triangle is given by: \[ A = \frac{1}{2} |\vec{CA} \times \vec{CB}| = \frac{1}{2} \sqrt{117} \] ### Final Answer The area of the triangle with vertices \( A(3, -1, 2) \), \( B(1, -1, -3) \), and \( C(4, -3, 1) \) is: \[ A = \frac{\sqrt{117}}{2} \text{ square units} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find the area of the triangle whose vertices are A(3,-1,2),B(1,-1,-3) and C(4,-3,1)

The area of the triangle with vertices A(3,4,-1),B(2,2,1) and C(3,4,-3) is :

Knowledge Check

  • area of the triangle with vertices A(3,4,-1), B(2,2,1) and C(3,4,-3) is :

    A
    `4 sqrt5`
    B
    `sqrt5`
    C
    `6`
    D
    None of these
  • The area of the triangle with vertices at (-4,1),(1,2),(4,-3) is

    A
    14
    B
    16
    C
    15
    D
    None of these
  • The area of the triangle whose vertices are A(1,2-1) B (3,1,4) and C (0,2,3)

    A
    `sqrt176/2`sp unit
    B
    8 sq unit
    C
    `sqrt186/2` sq unit
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    Using vectors,find the area of the triangle with vertices A(1,1,2),B(2,3,5) and C(1,5, 5)

    Find the area of the triangle with vertices A(11,2),B(2,3,5) and C(1,5,5).

    The area of the triangle with vertices at (-4,1),(1,2),(4,-3) is

    Find the area of the triangle with vertices : (3,8),(-4,2),(5,1) .

    Find the area of the triangle with vertices (3,8),(-4,2) and (5,1) .