Home
Class 11
PHYSICS
Find with the help of vectors, the area ...

Find with the help of vectors, the area of the triangle with vertices `A(3,-1,2), B(1,-1,-3)` and `C(4,-3,1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the triangle with vertices \( A(3, -1, 2) \), \( B(1, -1, -3) \), and \( C(4, -3, 1) \) using vectors, we can follow these steps: ### Step 1: Define the position vectors of the points Let the position vectors of points A, B, and C be defined as: \[ \vec{A} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}, \quad \vec{B} = \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix}, \quad \vec{C} = \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix} \] ### Step 2: Find the vectors \( \vec{CA} \) and \( \vec{CB} \) The vectors from point C to points A and B can be calculated as follows: \[ \vec{CA} = \vec{A} - \vec{C} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} - \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 - 4 \\ -1 + 3 \\ 2 - 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} \] \[ \vec{CB} = \vec{B} - \vec{C} = \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix} - \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 - 4 \\ -1 + 3 \\ -3 - 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \\ -4 \end{pmatrix} \] ### Step 3: Calculate the cross product \( \vec{CA} \times \vec{CB} \) To find the area of the triangle, we need to compute the cross product \( \vec{CA} \times \vec{CB} \): \[ \vec{CA} \times \vec{CB} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 2 & 1 \\ -3 & 2 & -4 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 2 & 1 \\ 2 & -4 \end{vmatrix} - \hat{j} \begin{vmatrix} -1 & 1 \\ -3 & -4 \end{vmatrix} + \hat{k} \begin{vmatrix} -1 & 2 \\ -3 & 2 \end{vmatrix} \] Calculating each of the 2x2 determinants: \[ = \hat{i} (2 \cdot -4 - 1 \cdot 2) - \hat{j} (-1 \cdot -4 - 1 \cdot -3) + \hat{k} (-1 \cdot 2 - 2 \cdot -3) \] \[ = \hat{i} (-8 - 2) - \hat{j} (4 - 3) + \hat{k} (-2 + 6) \] \[ = -10\hat{i} - 1\hat{j} + 4\hat{k} \] Thus, \[ \vec{CA} \times \vec{CB} = \begin{pmatrix} -10 \\ -1 \\ 4 \end{pmatrix} \] ### Step 4: Calculate the magnitude of the cross product The magnitude of the cross product gives us twice the area of the triangle: \[ |\vec{CA} \times \vec{CB}| = \sqrt{(-10)^2 + (-1)^2 + 4^2} = \sqrt{100 + 1 + 16} = \sqrt{117} \] ### Step 5: Calculate the area of the triangle The area \( A \) of the triangle is given by: \[ A = \frac{1}{2} |\vec{CA} \times \vec{CB}| = \frac{1}{2} \sqrt{117} \] ### Final Answer The area of the triangle with vertices \( A(3, -1, 2) \), \( B(1, -1, -3) \), and \( C(4, -3, 1) \) is: \[ A = \frac{\sqrt{117}}{2} \text{ square units} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find the area of the triangle whose vertices are A(3,-1,2),B(1,-1,-3) and C(4,-3,1)

area of the triangle with vertices A(3,4,-1), B(2,2,1) and C(3,4,-3) is :

The area of the triangle with vertices A(3,4,-1),B(2,2,1) and C(3,4,-3) is :

Using vectors,find the area of the triangle with vertices A(1,1,2),B(2,3,5) and C(1,5, 5)

Find the area of the triangle with vertices A(11,2),B(2,3,5) and C(1,5,5).

Find the area of the triangle with vertices : (3,8),(-4,2),(5,1) .

Find the area of the triangle with vertices (3,8),(-4,2) and (5,1) .

SL ARORA-VECTORS-Problems For Self Practice
  1. If the resultant of the vectors 3 hati +4 hatj +5 hatk and 5 hati +3 h...

    Text Solution

    |

  2. Show that the vectors a =3hati - 2hatj+hatk, b=hati - 3hatj+5hatk and ...

    Text Solution

    |

  3. If vectors vec(A),vec(B) and vec(C) have magnitudes 8,15 and 17 units ...

    Text Solution

    |

  4. If vec A =vec B- vec C, then determine the angle between vec A and ve...

    Text Solution

    |

  5. For two vectors vec(A) and vec(B) if vec(A) + vec(B) = vec(C) and A +B...

    Text Solution

    |

  6. Prove that (vec(A) +2vec(B)) .(2vec(A) - 3vec(B)) = 2A^(2) +AB cos the...

    Text Solution

    |

  7. Prove that the vectors vec(A) = 4 hati +3hatj +hatk and vec(B) = 12 ha...

    Text Solution

    |

  8. If vec(A) = 2hati +3 hatj +hatk and vec(B) = 3hati + 2hatj + 4hatk, th...

    Text Solution

    |

  9. Find the value of a for which the vectors 3 hati + 3hatj + 9 hatk and ...

    Text Solution

    |

  10. Find a unit vector perpendicular the vectors vec(A) = 4 hati = hatj +3...

    Text Solution

    |

  11. Find the sine of the angle between the vectors vec(A) = 3 hati - 4hatj...

    Text Solution

    |

  12. Find a vector of magnitude 18 which is perpendicular to both the vecto...

    Text Solution

    |

  13. Determine the area of the parallelogram whose adjacent sides are forme...

    Text Solution

    |

  14. Find the area of the triangle formed by points O,A and B such that vec...

    Text Solution

    |

  15. Find with the help of vectors, the area of the triangle with vertices ...

    Text Solution

    |

  16. If vec(A) and vec(B) are two such vectors that |vec(A)| = 2, |vec(B)| ...

    Text Solution

    |

  17. Find the moment about the point hati + 2hatj - hatk of a force represe...

    Text Solution

    |

  18. Prove that (vec(a) + vec(b)) xx (vec(a) - vec(b)) = 2 (vec(b) xx vec(a...

    Text Solution

    |

  19. Prove that |vec(a) xx vec(b)| = sqrt(a^(2)b^(2) -(vec(a) -vec(b))^(2))

    Text Solution

    |

  20. If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2 hati - hatj - hatk and ve...

    Text Solution

    |