Home
Class 12
MATHS
If: tan^(-1) ((sqrt(1 + x^2)-1)/(x)) = 4...

If: `tan^(-1) ((sqrt(1 + x^2)-1)/(x)) = 4` then : x =

A

`tan 2`

B

`tan 4`

C

`tan (1/4)`

D

`tan 8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) = 4 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \tan^{-1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) = 4 \] Taking the tangent of both sides, we have: \[ \frac{\sqrt{1 + x^2} - 1}{x} = \tan(4) \] ### Step 2: Cross-multiply Now, we can cross-multiply to eliminate the fraction: \[ \sqrt{1 + x^2} - 1 = x \tan(4) \] ### Step 3: Isolate the square root Next, we isolate the square root: \[ \sqrt{1 + x^2} = x \tan(4) + 1 \] ### Step 4: Square both sides Now, we square both sides to eliminate the square root: \[ 1 + x^2 = (x \tan(4) + 1)^2 \] ### Step 5: Expand the right side Expanding the right side gives: \[ 1 + x^2 = x^2 \tan^2(4) + 2x \tan(4) + 1 \] ### Step 6: Simplify the equation Subtracting 1 from both sides: \[ x^2 = x^2 \tan^2(4) + 2x \tan(4) \] Rearranging gives: \[ x^2 - x^2 \tan^2(4) - 2x \tan(4) = 0 \] ### Step 7: Factor the equation Factoring out \( x \): \[ x (1 - \tan^2(4)) - 2 \tan(4) = 0 \] ### Step 8: Solve for x Setting each factor to zero gives us: 1. \( x = 0 \) (not a valid solution since it would make the original equation undefined) 2. \( 1 - \tan^2(4) = 2 \tan(4) \) From \( 1 - \tan^2(4) = 2 \tan(4) \), we can rearrange it to: \[ 1 = \tan^2(4) + 2 \tan(4) \] This is a quadratic equation in terms of \( \tan(4) \): \[ \tan^2(4) + 2 \tan(4) - 1 = 0 \] ### Step 9: Use the quadratic formula Using the quadratic formula \( \tan(4) = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ \tan(4) = \frac{-2 \pm \sqrt{2^2 - 4(1)(-1)}}{2(1)} = \frac{-2 \pm \sqrt{4 + 4}}{2} = \frac{-2 \pm \sqrt{8}}{2} = \frac{-2 \pm 2\sqrt{2}}{2} = -1 \pm \sqrt{2} \] ### Step 10: Find x Since \( x = \tan(A) \) where \( A = 4 \), we substitute back to find \( x \): \[ x = -1 + \sqrt{2} \quad \text{(since } \tan(4) \text{ must be positive)} \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{-1 + \sqrt{2}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - A : BUILDING-UP THE BASE|152 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - A : BUILDING-UP THE BASE (B) Properties of triangles|27 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.3|13 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)(sqrt(1+x^(2)-1))/(x)=4^(0) then x=tan2^(0)(b)x=tan4^(0)x=tan(1)/(4)^(0)(d)x=tan8^(0)

the derivation of tan^(-1) "" ((sqrt(1+x^2)-1)/(x)) with respect to tan^(-1) "" ((2x sqrt(1-x^2))/(1-2x^2)) at x=0 ,is

Knowledge Check

  • tan[(sqrt(1+x^(2))-1)/x] =

    A
    `tan^(-1)x`
    B
    `1/2tan^(-1)x`
    C
    `2.tan^(-1)x`
    D
    none of these
  • Derivative of tan ^(-1) ((sqrt( 1+x^(2))-1)/( x)) w.r.t. tan ^(-1) ((2x sqrt(1-x^(2)))/( 1-2x ^(2))) is

    A
    ` (-sqrt( 1-x^(2)))/( 4( 1+x^(2)))`
    B
    ` (sqrt( 1-x^(2)))/( 4( 1+x^(2)))`
    C
    ` (-sqrt( 1-x^(2)))/(1+x^(2))`
    D
    ` ( sqrt( 1-x^(2)))/( 1+x^(2))`
  • The derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1)((2x sqrt(1-x^(2)))/(1-2x^(2))) at x = 0 is

    A
    `1//4`
    B
    `1//8`
    C
    `1//2`
    D
    1
  • Similar Questions

    Explore conceptually related problems

    tan^(-1)((1)/(sqrt(x^(2)-1))),|x|>1

    If tan^(-1) (sqrt( 1 +x^(2)) -1)/x = lambda tan^(-1)x then the value of lambda is

    the derivation of tan ^(-1)((sqrt(1+x^(2))-1)/(x)) with respect to tan^(-1)((2x sqrt(1-x^(2)))/(1-2x^(2)))

    The derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x)) with respect to tan^(-1)((2x sqrt(1-x^(2)))/(1-2x^(2))) at x=0 is (1)/(8)(b)(1)/(4)(c)(1)/(2)(d)1

    s=tan^(-1)((sqrt(1+x^(2))-1)/(x)) and T=tan^(-1)x then (ds)/(dT)