Home
Class 12
MATHS
If: tan^(-1) ((sqrt(1 + x^2)-1)/(x)) = 4...

If: `tan^(-1) ((sqrt(1 + x^2)-1)/(x)) = 4` then : x =

A

`tan 2`

B

`tan 4`

C

`tan (1/4)`

D

`tan 8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) = 4 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \tan^{-1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) = 4 \] Taking the tangent of both sides, we have: \[ \frac{\sqrt{1 + x^2} - 1}{x} = \tan(4) \] ### Step 2: Cross-multiply Now, we can cross-multiply to eliminate the fraction: \[ \sqrt{1 + x^2} - 1 = x \tan(4) \] ### Step 3: Isolate the square root Next, we isolate the square root: \[ \sqrt{1 + x^2} = x \tan(4) + 1 \] ### Step 4: Square both sides Now, we square both sides to eliminate the square root: \[ 1 + x^2 = (x \tan(4) + 1)^2 \] ### Step 5: Expand the right side Expanding the right side gives: \[ 1 + x^2 = x^2 \tan^2(4) + 2x \tan(4) + 1 \] ### Step 6: Simplify the equation Subtracting 1 from both sides: \[ x^2 = x^2 \tan^2(4) + 2x \tan(4) \] Rearranging gives: \[ x^2 - x^2 \tan^2(4) - 2x \tan(4) = 0 \] ### Step 7: Factor the equation Factoring out \( x \): \[ x (1 - \tan^2(4)) - 2 \tan(4) = 0 \] ### Step 8: Solve for x Setting each factor to zero gives us: 1. \( x = 0 \) (not a valid solution since it would make the original equation undefined) 2. \( 1 - \tan^2(4) = 2 \tan(4) \) From \( 1 - \tan^2(4) = 2 \tan(4) \), we can rearrange it to: \[ 1 = \tan^2(4) + 2 \tan(4) \] This is a quadratic equation in terms of \( \tan(4) \): \[ \tan^2(4) + 2 \tan(4) - 1 = 0 \] ### Step 9: Use the quadratic formula Using the quadratic formula \( \tan(4) = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ \tan(4) = \frac{-2 \pm \sqrt{2^2 - 4(1)(-1)}}{2(1)} = \frac{-2 \pm \sqrt{4 + 4}}{2} = \frac{-2 \pm \sqrt{8}}{2} = \frac{-2 \pm 2\sqrt{2}}{2} = -1 \pm \sqrt{2} \] ### Step 10: Find x Since \( x = \tan(A) \) where \( A = 4 \), we substitute back to find \( x \): \[ x = -1 + \sqrt{2} \quad \text{(since } \tan(4) \text{ must be positive)} \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{-1 + \sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - A : BUILDING-UP THE BASE|152 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - A : BUILDING-UP THE BASE (B) Properties of triangles|27 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.3|13 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)(sqrt(1+x^(2)-1))/(x)=4^(0) then x=tan2^(0)(b)x=tan4^(0)x=tan(1)/(4)^(0)(d)x=tan8^(0)

tan[(sqrt(1+x^(2))-1)/x] =

tan^(-1)((1)/(sqrt(x^(2)-1))),|x|>1

If tan^(-1) (sqrt( 1 +x^(2)) -1)/x = lambda tan^(-1)x then the value of lambda is

Derivative of tan ^(-1) ((sqrt( 1+x^(2))-1)/( x)) w.r.t. tan ^(-1) ((2x sqrt(1-x^(2)))/( 1-2x ^(2))) is

the derivation of tan ^(-1)((sqrt(1+x^(2))-1)/(x)) with respect to tan^(-1)((2x sqrt(1-x^(2)))/(1-2x^(2)))

The derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x)) with respect to tan^(-1)((2x sqrt(1-x^(2)))/(1-2x^(2))) at x=0 is (1)/(8)(b)(1)/(4)(c)(1)/(2)(d)1

s=tan^(-1)((sqrt(1+x^(2))-1)/(x)) and T=tan^(-1)x then (ds)/(dT)

MARVEL PUBLICATION-TRIGONOMETRIC FUNCTIONS-HARDER SOLVED EXAMPLES
  1. If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi" , prove that " x^(2) + ...

    Text Solution

    |

  2. If cos^(-1)(x/a) + cos^(-1) (y/b) = alpha show that : (x^2)/(a^2) - (...

    Text Solution

    |

  3. Prove that tan{(pi)/4 + 1/2 Cos^(-1)((a)/(b))}+tan{((pi)/4-1/2 Cos^(-1...

    Text Solution

    |

  4. If 0<a1<a2<ddot<an , then prove that tan^(-1)((a1x-y)/(x+a1y))+tan^(-1...

    Text Solution

    |

  5. If a(1), a(2), a(3),...., a(n) is an A.P. with common difference d, th...

    Text Solution

    |

  6. If alpha = tan^(-1) ((xsqrt(3))/(2y - x)) and beta = tan^(-1) ((2x - y...

    Text Solution

    |

  7. Find the period of the function f(x) = tan (3x + 5).

    Text Solution

    |

  8. Find the period of (i) sin 3x + cos 3x

    Text Solution

    |

  9. Find the period of sin 5x - cos 5x.

    Text Solution

    |

  10. Find the period of the function f(x) = sin((pi x)/3) + cos ((pi x)/2...

    Text Solution

    |

  11. If m tan(alpha-theta)/( cos^2 theta) = n (tan theta)/ (cos^2 (alpha -...

    Text Solution

    |

  12. Show that cos^(-1) ((cos alpha+cos beta)/(1+cosalpha cosbeta))=2 tan^(...

    Text Solution

    |

  13. tan[2.tan^(-1)(1/5)- pi/4]=

    Text Solution

    |

  14. tan [cos^(-1)((4)/(5)) +tan ^(-1)((2)/(3))]=....

    Text Solution

    |

  15. Solution of the equation tan^(-1)(2x) + tan^(-1)(3x) = pi/4

    Text Solution

    |

  16. If sin^(-1)(x/5) + cosec^(-1) (5/4) = pi/2 , then the value of x is

    Text Solution

    |

  17. cot[csc^(-1)(5/3) + tan^(-1)(2/3)] = ....

    Text Solution

    |

  18. If x, y, z are in A.P. and tan^(-1) x, tan^(-1) y and tan^(-1)z are al...

    Text Solution

    |

  19. If: tan^(-1) ((sqrt(1 + x^2)-1)/(x)) = 4 then : x =

    Text Solution

    |

  20. If x != 0, then tan((pi)/4 + 1/2 cos^(-1) x) + tan ((pi)/4 - 1/2 cos...

    Text Solution

    |