Home
Class 12
MATHS
If x= sin^(-1)(3t-4t^(3)) and y=cos^(-1)...

If `x= sin^(-1)(3t-4t^(3))` and `y=cos^(-1)(sqrt(1-t^(2)))`, then `(dy)/(dx)` is equal to

A

`1/2`

B

`2/5`

C

`3/2`

D

`1/3`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given \(x = \sin^{-1}(3t - 4t^3)\) and \(y = \cos^{-1}(\sqrt{1 - t^2})\), we will use the chain rule and implicit differentiation. ### Step 1: Differentiate \(x\) with respect to \(t\) We start with: \[ x = \sin^{-1}(3t - 4t^3) \] To differentiate \(x\) with respect to \(t\), we use the derivative of \(\sin^{-1}(u)\), which is \(\frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dt}\). Let \(u = 3t - 4t^3\). Then: \[ \frac{du}{dt} = 3 - 12t^2 \] Now, applying the chain rule: \[ \frac{dx}{dt} = \frac{1}{\sqrt{1 - (3t - 4t^3)^2}} \cdot (3 - 12t^2) \] ### Step 2: Differentiate \(y\) with respect to \(t\) Next, we differentiate \(y\): \[ y = \cos^{-1}(\sqrt{1 - t^2}) \] The derivative of \(\cos^{-1}(v)\) is \(-\frac{1}{\sqrt{1 - v^2}} \cdot \frac{dv}{dt}\). Let \(v = \sqrt{1 - t^2}\). Then: \[ \frac{dv}{dt} = \frac{-t}{\sqrt{1 - t^2}} \] Now, applying the chain rule: \[ \frac{dy}{dt} = -\frac{1}{\sqrt{1 - (1 - t^2)}} \cdot \left(\frac{-t}{\sqrt{1 - t^2}}\right) = \frac{t}{\sqrt{t^2}} \] Since \(\sqrt{t^2} = |t|\), we have: \[ \frac{dy}{dt} = \frac{t}{|t|} = 1 \text{ (for } t > 0\text{)} \] ### Step 3: Use the chain rule to find \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\) using the relationship: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{1}{\frac{1}{\sqrt{1 - (3t - 4t^3)^2}} \cdot (3 - 12t^2)} \] This simplifies to: \[ \frac{dy}{dx} = \frac{\sqrt{1 - (3t - 4t^3)^2}}{3 - 12t^2} \] ### Final Result Thus, the final answer for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{\sqrt{1 - (3t - 4t^3)^2}}{3 - 12t^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|138 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF PARAMETRIC FUNCTIONS|18 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

If =sin^(-1)(3t-4t^(3)),y=cos^(-1)(8t^(4)-8t^(2)+1) then (dy)/(dx)=

If x=cos ^(-1) (4t^(3) -3t) ,y =tan ^(-1)((sqrt( 1-t^(2)))/( t)),then (dy)/(dx)=

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=a(t-sin t),y=a(1-cos t), then (dy)/(dx) is equal to

If x=sin^(-1)((t)/(sqrt(1+t^(2)))),y=cos^(-1)((1)/(sqrt(1+t^(2)))),"show that "(dy)/(dx)=1

If x=cos^(-1)t,y=log(1-t^(2))," then "((dy)/(dx))" at "t=(1)/(2) is

if sqrt(x^(2)+y^(2))=e^(t) where t=sin^(-1)((y)/(sqrt(x^(2)+y^(2)))) then (dy)/(dx) is equal to

If x=sqrt(2^(cosec^(-1_t))) and y=sqrt(2^(sec^(-1_t))) (|t|ge1) then (dy)/(dx) is equal to.

TARGET PUBLICATION-DIFFERENTIATION -HIGHER ORDER DERIVATIVES
  1. If x= sin^(-1)(3t-4t^(3)) and y=cos^(-1)(sqrt(1-t^(2))), then (dy)/(dx...

    Text Solution

    |

  2. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  3. Differential coefficient of tan^(-1)sqrt((1-x^2)/(1+x^2)) w.r.t. cos^(...

    Text Solution

    |

  4. If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)), then (dy)/(dx) is equal...

    Text Solution

    |

  5. If y=sin(2 sin^(-1)x), then (dy)/(dx)=

    Text Solution

    |

  6. The derivative of tan^(-1)[(sin x)/(1+ cosx)] with respect to tan^(-1)...

    Text Solution

    |

  7. if x=a cos^(4) theta, y= a sin^(4) theta, "then" (dy)/(dx)"at" theta=(...

    Text Solution

    |

  8. The derivative of sec^(-1)(1/(2x^2+1)) with respect to sqrt(1+3x) at x...

    Text Solution

    |

  9. If x=sin tcos 2t,y=cos tsin 2t ,then " at " t= (pi)/(4) ,(dy)/(dx)

    Text Solution

    |

  10. The derivative of tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)...

    Text Solution

    |

  11. If : y=cos^(2)((3x)/(2))-sin^(2)((3x)/(2))," then: "(d^(2)y)/(dx^(2))=

    Text Solution

    |

  12. If x=t^(2) and y=t^(3)+1, then (d^(2)y)/(dx^(2)) is

    Text Solution

    |

  13. let y=t^(10)+1, and x=t^8+1, then (d^2y)/(dx^2) is

    Text Solution

    |

  14. If x=log t, t gt 0 and y=1/t, then (d^(2)y)/(dx^(2)), is

    Text Solution

    |

  15. If y = 1 - x +(x^(2))/(2!) - (x^(3))/(3!) + (x^(4))/(4!) - ..., " the...

    Text Solution

    |

  16. Let f be a function defined for every x, such that f''=-f, f(0)=0,f'(0...

    Text Solution

    |

  17. If e^y\ (x+1)=1 , then (d^(2)y)/(dx^(2))= .

    Text Solution

    |

  18. If y=ax^(5)+(b)/(x^(4))," then "(d^(2)y)/(dx^(2))=

    Text Solution

    |

  19. If y=a x^(n+1)+b x^(-n),t h e n x^2(d^2y)/(dx^2) is equal to

    Text Solution

    |

  20. If y=a cos ( log x )+ bsin (log x) where a ,b are parameters ,then ...

    Text Solution

    |