Home
Class 12
MATHS
If x= sin^(-1)(3t-4t^(3)) and y=cos^(-1)...

If `x= sin^(-1)(3t-4t^(3))` and `y=cos^(-1)(sqrt(1-t^(2)))`, then `(dy)/(dx)` is equal to

A

`1/2`

B

`2/5`

C

`3/2`

D

`1/3`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given \(x = \sin^{-1}(3t - 4t^3)\) and \(y = \cos^{-1}(\sqrt{1 - t^2})\), we will use the chain rule and implicit differentiation. ### Step 1: Differentiate \(x\) with respect to \(t\) We start with: \[ x = \sin^{-1}(3t - 4t^3) \] To differentiate \(x\) with respect to \(t\), we use the derivative of \(\sin^{-1}(u)\), which is \(\frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dt}\). Let \(u = 3t - 4t^3\). Then: \[ \frac{du}{dt} = 3 - 12t^2 \] Now, applying the chain rule: \[ \frac{dx}{dt} = \frac{1}{\sqrt{1 - (3t - 4t^3)^2}} \cdot (3 - 12t^2) \] ### Step 2: Differentiate \(y\) with respect to \(t\) Next, we differentiate \(y\): \[ y = \cos^{-1}(\sqrt{1 - t^2}) \] The derivative of \(\cos^{-1}(v)\) is \(-\frac{1}{\sqrt{1 - v^2}} \cdot \frac{dv}{dt}\). Let \(v = \sqrt{1 - t^2}\). Then: \[ \frac{dv}{dt} = \frac{-t}{\sqrt{1 - t^2}} \] Now, applying the chain rule: \[ \frac{dy}{dt} = -\frac{1}{\sqrt{1 - (1 - t^2)}} \cdot \left(\frac{-t}{\sqrt{1 - t^2}}\right) = \frac{t}{\sqrt{t^2}} \] Since \(\sqrt{t^2} = |t|\), we have: \[ \frac{dy}{dt} = \frac{t}{|t|} = 1 \text{ (for } t > 0\text{)} \] ### Step 3: Use the chain rule to find \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\) using the relationship: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{1}{\frac{1}{\sqrt{1 - (3t - 4t^3)^2}} \cdot (3 - 12t^2)} \] This simplifies to: \[ \frac{dy}{dx} = \frac{\sqrt{1 - (3t - 4t^3)^2}}{3 - 12t^2} \] ### Final Result Thus, the final answer for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{\sqrt{1 - (3t - 4t^3)^2}}{3 - 12t^2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|138 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF PARAMETRIC FUNCTIONS|18 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

If =sin^(-1)(3t-4t^(3)),y=cos^(-1)(8t^(4)-8t^(2)+1) then (dy)/(dx)=

If x=a(t-sin t),y=a(1-cos t), then (dy)/(dx) is equal to

Knowledge Check

  • If x=sin^(-1)(3t-4t^8) and y=cos^(-1)(sqrt(1-t^2)) , then dy/dx is equal to

    A
    `1//2`
    B
    `2//5`
    C
    `3//2`
    D
    `1//3`
  • If x=cos ^(-1) (4t^(3) -3t) ,y =tan ^(-1)((sqrt( 1-t^(2)))/( t)),then (dy)/(dx)=

    A
    ` (1)/(3) `
    B
    ` (-1)/(3)`
    C
    ` 3`
    D
    `-3`
  • If x=(2t)/(1+t^(2)) and y=(1-t^(2))/(1+t^(2)) , then (dy)/(dx) is equal to

    A
    `(2t)/(t^(2)+1)`
    B
    `(2t)/(t^(2)-1)`
    C
    `(2t)/(1-t^(2))`
    D
    None
  • Similar Questions

    Explore conceptually related problems

    If x=sin^(-1)((t)/(sqrt(1+t^(2)))),y=cos^(-1)((1)/(sqrt(1+t^(2)))),"show that "(dy)/(dx)=1

    if sqrt(x^(2)+y^(2))=e^(t) where t=sin^(-1)((y)/(sqrt(x^(2)+y^(2)))) then (dy)/(dx) is equal to

    If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

    If x=cos^(-1)t,y=log(1-t^(2))," then "((dy)/(dx))" at "t=(1)/(2) is

    If x=sqrt(2^(cosec^(-1_t))) and y=sqrt(2^(sec^(-1_t))) (|t|ge1) then (dy)/(dx) is equal to.